Multicomponent Reactions

Double Heteroatom Functionalization of Arenes Using Benzyne Three-Component Coupling**

José-Antonio García-López, Meliha Çetin, and Michael F. Greaney*

Abstract: Arynes participate in three-component coupling reactions with N, S, P, and Se functionalities to yield 1,2-heteroatom-difunctionalized arenes. Using 2-iodophenyl arylsulfonates as benzyne precursors, we could effectively add magnesiated S-, Se-, and N-nucleophilic components to the strained triple bond. In the same pot, addition of electrophilic N, S, or P reagents and a copper(I) catalyst trapped the intermediate aryl Grignard to produce a variety of 1,2-difunctionalized arenes.

1,2-Heteroatom-functionalized arenes represent privileged structures in pharmaceuticals and catalysis (Scheme 1).\(^1\) Covering a vast area of chemical structure and function, their synthesis usually entails multistep sequences with attendant multiple purification steps. In the 2-functionalized aniline series, for example, an ortho-halonoitrobenezene is commonly used for initial \(\text{SN}_2\) bond formation, followed by nitro reduction and a second \(\text{C-N}\) bond forming reaction at the amine functional group.\(^2\) More recently, sequential metal-catalyzed \(\text{C-N}\) and \(\text{C-S}\) bond formations have been developed on suitably differentiated haloarene precursors.\(^3\) Our interest in benzyne chemistry\(^4\) led us to speculate whether this compound class could be made in a single operation through a three component coupling of two heteroatom moieties and an aryne.\(^5\)

Nucleophilic addition to benzyne to form a reactive aryl anion intermediate 2, followed by trapping with an electrophilic component, is a fundamental reaction mode in benzyne chemistry that has seen extensive application in synthesis.\(^6,7\) Perhaps surprisingly, the three-component coupling of benzyne and two heteroatom moieties has yet to be described as a general method.\(^8,9\) The development of this reaction would yield valuable heteroatom-functionalized arenes in a single step, with broad application in synthesis.

We chose to study tandem S- and N-addition to benzyne in the first instance. Important precedent from Knochel and co-workers had shown that magnesium thiolates undergo efficient addition to benzenes generated from 2-iodophenyl arylsulfonates 4 with \(\text{PrMgCl}\), with the resulting adducts being trapped with simple carbon electrophiles in good yield.\(^10\) Using this chemistry for the initial nucleophilic addition, we then planned to try \(\text{O-benzoyl N,N-dialkylhydroxylamines}\) as the nitrogen source. These electrophilic aminating agents are simple to prepare as stable, crystalline solids, and have recently been shown to have excellent versatility in \(\text{C-N}\) bond formation.\(^11\)

Treatment of 2-iodophenyl-sulfonate 4 with two equivalents of \(\text{PrMgCl}\) in the presence of 4-tert-butyl-benzothiolate 5 at \(-78^\circ\text{C}\) in THF, followed by warming of the mixture to 0°C, afforded the expected 2-magnesiated benzothioether 6 (Scheme 2). Pleasingly, dropwise addition of this intermediate Grignard to a mixture containing one equivalent...
of O-benzoyl N-hydroxypiperidine and catalytic CuCl$_2$ (5 mol%) in dry THF, yielded the desired 2-(2-piperidine phenyl)benzenethioether 7a in 35% yield.

An optimization study (see the Supporting Information, SI) focusing on reaction stoichiometry and catalyst choice improved the yield to 76%, using a CuCl catalyst (10 mol%) and phenanthroline ligand (10 mol%) system. Catalyst loading was a key parameter, as larger amounts of CuCl led to copious homocoupling of the intermediate Grignard 6. No product 7a was detected in the absence of copper, as C-arylation of the O-benzoylhydroxylamine reagent is preferred to yield the ketone.$^{[12]}$ We were pleased to find that the reaction was general for a range of aromatic, pyridine, and thiophene thiols, with electron-donating (OMe, tBu) and electron-withdrawing (F, Br) substituents being well accommodated ($^{[7a-i]}$, 51–76% yield, Figure 1). Phenyl selenide was also productive in the coupling, affording the expected ortho-seleno-aminated product 7j in 59% yield.

In terms of the electrophilic amine moiety, the reaction worked well for introducing cyclic (morpholine, thiomorpholine, and piperidine) and acyclic secondary amines ($^{[N,N]}$-diethyl and $^{[N,N]}$-methyl benzyl amines). Primary O-benzoyl hydroxylamines, however, worked poorly in the reaction. To address this shortcoming, we experimented with the transmetalation of intermediate 6 with zinc; pioneering work from Johnson has shown that arylzinc compounds can react with primary O-benzoyl hydroxylamines under copper catalysis to give secondary anilines.$^{[13]}$ We were pleased to find that the addition of ZnCl$_2$ (0.5 equiv) to the reaction mixture was successful, enabling 1PrNHOBz and CyNHOBz to be used as electrophiles in the reaction ($^{[7k, 7l]}$ in 44 and 46% yield, respectively.

Substituted arynes could be successfully employed, with 3-methoxybenzyne reacting smoothly to give the expected 1,2,3-O,N,S-functionalized product 7o as a single regioisomer.$^{[14]}$ Using 1,2-naphthyne as the starting material, by contrast, gave the thioaminated products 7m and 7m' in 56% yield, but as a separable mixture of regioisomers (1:1). Addition to 1,2-naphthylene often favors the 2-position (e.g., for neutral nitrogen nucleophiles).$^{[4d,e,h]}$ but selectivity can vary according to the nature of the nucleophile.$^{[35]}$ Here, the strong thiolate nucleophile shows little discrimination (cf. magnesium amide addition). We were pleased to extend the reaction to 5,6-quinolyne, a heterayne that has scarcely been exploited in the literature.$^{[41]}$ The three-component coupling afforded the piperezinyl-mercaptoquinolines ($^{[7n, 7n']}$ in 55% yield (using ZnCl$_2$ as an additive for the amination step), again giving a 1:1 mixture of regioisomers.$^{[15]}$ Starting material 4-methylbenzyne afforded a 66% yield of 7p in the expected 1:1 mixture of isomers, exhibiting the regiodivergence typical of additions to meta-substituted benzenes. Finally, we demonstrated that electrophilic P and S sources were effective in the three-component coupling, synthesizing the S.P adduct 8a using CuCl (2 mol %) and CIPPh$_3$, and the mixed S.S adduct 8b through quenching with tolyldisulfide in the presence of CuCl (10 mol %).

Having established a working thio- and seleno-amination system, we turned our attention to benzyne double amination.
Access to this motif through stepwise metal-catalyzed C–N bond forming chemistry is underdeveloped, making a prospective aryne three-component coupling route particularly interesting.[18] Using magnesiated secondary anilines as the initial nucleophiles, we were pleased to find that our established three-component coupling conditions translated well to diamine synthesis (Scheme 3). Although yields were slightly lower than the thio system, we could successfully access a variety of 1,2-diamino benzenes (10a-1) in 30–73 % yield. It is likely that the initial aniline addition adduct presents additional steric hindrance to the second amination step, relative to the thio analogues, leading to some attenuation in yields. Zinc transmetalation was beneficial for the cyclic morpholine, piperidine, and piperazine products 10g-i, plus the primary isopropylamine adduct 10j. The effect was not general, however, with acyclic secondary amines 10b,c,f reacting markedly worse under zincation conditions. The use of 1,2-naphthyne in the diamination contrasted with the thioamination, giving a single regioisomeric product 10k. The less reactive magnesium anilide is evidently able to discriminate between the differences in steric demand at either aryne position, adding to the more accessible aryne 2-position.

Starting with 3-methoxy benzene gave the O,N,N product 10l as a single regioisomer, albeit in low yield. As with the thioaldehyde addition system, we could also use phosphorus and sulfur electrophiles to access the N,P and N,S products 11a and 11b, respectively. The polarity reversal in synthesizing 11b is complimentary to thiolate addition and trapping with R’R”NOBz reagents, as the O-benzoyl hydroxylaniline reagents are less readily synthesized.[20]

We applied our three component coupling protocol to the synthesis of vortioxetine, 13, an antidepressant drug that has recently received FDA and EMA approval (sold as brintellix; Scheme 4). The molecule had previously been prepared through double nucleophilic substitution of 1,2-dichlorobenzene, mediated by ferrocene, in 17 % overall yield.[21]

Following our optimized procedure, 2,4-dimethylthiophenol reacted with benzene precursor 4 to generate an intermediate Grignard 11. Transmetalation with ZnCl\textsubscript{2} enabled efficient copper-catalyzed amination with the N-Boc protected O-benzoyl hydroxylaniline derived from piperazine, affording a 78 % yield of 12 in a single manipulation. Simple TFA treatment removed the Boc group, affording the desired pharmaceutical 13 in 73 % overall yield in two steps from 4, without recourse to noble-metal catalysis.

In conclusion, we have developed the aryne three-component coupling reaction to encompass double heteroatom substitution, showcasing a new, one-pot approach to S,N-, N,N-, Se,N-, S,P- and N,P-functionalized arenes that avoids the isolation of intermediates. The method encompasses a variety of thiols, arynes (including heterynes), and amines, and uses inexpensive metal reagents and catalysts.

Received: November 4, 2014
Published online: January 7, 2015

Keywords: arynes · benzene · Grignard reaction · heterocycles · multicomponent reactions

Scheme 4. Vortioxetine synthesis. TFA = trifluoroacetic acid.

Following our optimized procedure, 2,4-dimethylthiophenol reacted with benzene precursor 4 to generate an intermediate Grignard 11. Transmetalation with ZnCl\textsubscript{2} enabled efficient copper-catalyzed amination with the N-Boc protected O-benzoyl hydroxylaniline derived from piperazine, affording a 78 % yield of 12 in a single manipulation. Simple TFA treatment removed the Boc group, affording the desired pharmaceutical 13 in 73 % overall yield in two steps from 4, without recourse to noble-metal catalysis.

In conclusion, we have developed the aryne three-component coupling reaction to encompass double heteroatom substitution, showcasing a new, one-pot approach to S,N-, N,N-, Se,N-, S,P- and N,P-functionalized arenes that avoids the isolation of intermediates. The method encompasses a variety of thiols, arynes (including heterynes), and amines, and uses inexpensive metal reagents and catalysts.

Received: November 4, 2014
Published online: January 7, 2015

Keywords: arynes · benzene · Grignard reaction · heterocycles · multicomponent reactions

Scheme 4. Vortioxetine synthesis. TFA = trifluoroacetic acid.

Following our optimized procedure, 2,4-dimethylthiophenol reacted with benzene precursor 4 to generate an intermediate Grignard 11. Transmetalation with ZnCl\textsubscript{2} enabled efficient copper-catalyzed amination with the N-Boc protected O-benzoyl hydroxylaniline derived from piperazine, affording a 78 % yield of 12 in a single manipulation. Simple TFA treatment removed the Boc group, affording the desired pharmaceutical 13 in 73 % overall yield in two steps from 4, without recourse to noble-metal catalysis.

In conclusion, we have developed the aryne three-component coupling reaction to encompass double heteroatom substitution, showcasing a new, one-pot approach to S,N-, N,N-, Se,N-, S,P- and N,P-functionalized arenes that avoids the isolation of intermediates. The method encompasses a variety of thiols, arynes (including heterynes), and amines, and uses inexpensive metal reagents and catalysts.

Received: November 4, 2014
Published online: January 7, 2015

Keywords: arynes · benzene · Grignard reaction · heterocycles · multicomponent reactions

Scheme 4. Vortioxetine synthesis. TFA = trifluoroacetic acid.

Following our optimized procedure, 2,4-dimethylthiophenol reacted with benzene precursor 4 to generate an intermediate Grignard 11. Transmetalation with ZnCl\textsubscript{2} enabled efficient copper-catalyzed amination with the N-Boc protected O-benzoyl hydroxylaniline derived from piperazine, affording a 78 % yield of 12 in a single manipulation. Simple TFA treatment removed the Boc group, affording the desired pharmaceutical 13 in 73 % overall yield in two steps from 4, without recourse to noble-metal catalysis.

In conclusion, we have developed the aryne three-component coupling reaction to encompass double heteroatom substitution, showcasing a new, one-pot approach to S,N-, N,N-, Se,N-, S,P- and N,P-functionalized arenes that avoids the isolation of intermediates. The method encompasses a variety of thiols, arynes (including heterynes), and amines, and uses inexpensive metal reagents and catalysts.

Received: November 4, 2014
Published online: January 7, 2015

Keywords: arynes · benzene · Grignard reaction · heterocycles · multicomponent reactions