A Compartmentalized Mathematical Model of the \(\beta_1 \)-Adrenergic Signaling System in Mouse Ventricular Myocytes

Vladimir E. Bondarenko

Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America

Abstract

The \(\beta_1 \)-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca\(^{2+}\)]
, transients and contraction force, and increased heart rhythm. However, excessive stimulation of \(\beta_1 \)-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the \(\beta_1 \)-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol). The model describes biochemical reactions that occur during stimulation of \(\beta_1 \)-adrenoceptors, changes in ionic currents, and modifications of Ca\(^{2+}\) handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca\(^{2+}\) handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca\(^{2+}\)]
, transients; changes in intracellular and transmembrane Ca\(^{2+}\) fluxes; and [Na\(^{+}\)], fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of \(\beta_1 \)-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca\(^{2+}\)]
 transients. In particular, the model includes two subpopulations of the L-type Ca\(^{2+}\) channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca\(^{2+}\)], transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of mathematical models for other species or for pathological conditions.

Introduction

Cardiac cells belong to a wide class of excitable cells which include electrical activity, Ca\(^{2+}\) dynamics, and protein signaling networks. While early experimental studies of cardiac cells are predominantly devoted to their electrical activity, and later to Ca\(^{2+}\) dynamics, more recent studies involve investigations of protein signaling systems, which modulate both action potentials and intracellular Ca\(^{2+}\) transients [1,2]. On the tissue and whole heart levels, the activation of such signaling systems either promotes or suppresses pro-arrhythmic behavior. In addition, in diseased hearts, protein signaling networks become modified and do not properly regulate the electrical activity or Ca\(^{2+}\) handling system [3]. As a result, the studies of major signaling protein networks in cardiac cells identified new potential therapeutic targets for treatment of heart diseases; some of the targets include signaling proteins involved in \(\beta_1 \)-adrenergic signaling system [4,5,6,7].

Mathematical modeling of protein signaling networks is a supplementary tool for understanding their functions in the heart. Recently, particular attention has been paid to the development of comprehensive models for \(\beta_1 \)-adrenergic system in ventricular myocytes of different species [8,9,10,11,12]. The first model developed by Saucerman et al. [10] for rat ventricular myocytes set high standards for simulation of the \(\beta_1 \)-adrenergic signaling system. The model included biochemical and electrophysiological parts with two major protein kinase A targets, phospholamban and the L-type Ca\(^{2+}\) channel, and consisted of one cytosolic compartment (single-compartment model). Later, a similar model was developed for rabbit ventricular myocytes and included several new PKA targets: ryanodine receptors, troponin I, and slow delayed rectifier K\(^+\) current, I\(_{Ks}\) [11]. The model was further extended to simulate the effects of the \(\beta_1 \)-adrenergic signaling system in mouse ventricular myocytes, predominantly on Ca\(^{2+}\) dynamics [12]. Finally, a model of \(\beta_1 \)-adrenergic signaling system in guinea pig ventricular myocytes [9] was developed based on the model of Saucerman et al. [10], which is devoted to the analysis of the changes in action potential, intracellular [Ca\(^{2+}\)], transients, and ionic fluxes upon stimulation of \(\beta_1 \)-adrenoceptors with agonist isoproterenol.
Simultaneously, multi-compartmental models of protein signaling networks, including the β₁-adrenergic signaling system, were developed [8,13,14]. The compartmentalized models of Iancu et al. [13,14] included only the biochemical part of β₁-adrenergic and M₂-muscarinic signaling systems and described the dynamics of cAMP and PKA in different subcellular compartments (caveolae, extracaveolae, and cytosol). The only compartmentalized model of cardiac protein signaling network, which includes both biochemical and electrophysiological parts, β₁- and β₂-adrenergic and CaMKII-mediated signaling systems, was developed recently for canine ventricular myocytes by Heijman et al. [8]. The model was extensively verified by experimental data and reproduced major features of stimulation of the three signaling systems.

Compartmentalization of the signaling systems in cardiac cells is an important property. This property allows for regulation of multiple cellular functions, such as electrical activity, Ca²⁺ dynamics, and cellular contraction (for examples see reviews [1,15,16,17,18]). The experimental data demonstrates differential localization of the components of the Ca²⁺-mediated, α- and β-adrenergic signaling systems [19,20,21,22]. In cardiac myocytes, β₁-adrenergic receptors are mostly localized in membrane compartments that lack caveolin-3, while β₂-adrenergic receptors are mostly found in caveolin-3-rich domains [20]. Investigations of the physiological role of the β-receptors have shown their differing effects in the development of disease states: excessive activation of β₁-adrenergic signaling led to cardiac hypertrophy and heart failure [23], while moderately increased stimulation of β₂-adrenergic signaling was cardioprotective [24]. In addition, β₁- and β₂-adrenergic receptors modulate differently cardiac ionic currents and contraction proteins, which are also localized in different cellular compartments [15,16]. In the β₁-adrenergic signaling system alone, which is the major topic of this paper, multiple signaling molecules are also distributed among the major cellular compartments related to caveolin-3, non-caveolea cellular membrane, or cytosol, and these molecules are differentially modulated upon activation of β₁-receptors. In particular, the recent discovery of the two subpopulations of the L-type Ca²⁺ channels, the major players in cardiac excitation-contraction coupling, which are localized in caveolin-3-rich and non-caveolea compartments and play different physiological roles, requires more comprehensive, compartmentalized models of cardiac cells [22].

In this paper, we developed a new compartmentalized model for the β₁-adrenergic signaling system in mouse ventricular myocytes. The model is based on our previously published models for action potential and Ca²⁺ dynamics in mouse ventricular myocytes [25,26]. The new model includes both biochemical and electrophysiological parts, as well as compartmentalization of the β₁-adrenergic signaling system, which includes three major compartments: caveolae, extracaveolae, and cytosol. Both biochemical and electrophysiological parts are verified by extensive experimental data, primarily obtained from the rodent cardiac cells. Activation of the major proteins in the signaling system, such as adenyl cyclases and phosphodiesterases, is compared directly to the data from the mouse ventricular myocytes in absolute magnitudes. The model successfully reproduced existing experimental data on cAMP dynamics, activation of adenyl cyclases and phosphodiesterases, protein kinase A and phosphorylation of its targets, and the effects of phosphodiesterases inhibition on cAMP transients. Simulations also reproduced data obtained from voltage-clamp protocols for major repolarization currents of mouse ventricular myocytes. The model is able to simulate action potential shape and duration upon stimulation of β₁-adrenergic receptors (β₁-ARs). The model elucidated the mechanism of relatively moderate AP prolongation, significant increase in intracellular [Ca²⁺] transients, modification of the intracellular and transmembrane Ca²⁺ fluxes, and [Na⁺] fluxes and dynamics. The model includes two pools of the L-type Ca²⁺ channels, one in the caveolea and the other in the extracaveolea compartments. The simulations demonstrated their different modulations upon stimulation of β₁-ARs and their different effects on the action potentials and [Ca²⁺] transients. The model simulated frequency dependences of [Ca²⁺], transient decays for control conditions and after stimulation of β₁-ARs, and made testable predictions for the frequency dependences of [Ca²⁺], transient amplitudes, AP amplitudes and durations. The simulation results are compared to the results obtained from other models of β₁-adrenergic signaling system in other species, and the model limitations are discussed.

Methods

A mathematical model for the β₁-adrenergic signaling system in mouse ventricular myocytes is a natural extension of the previously published model for action potential and Ca²⁺ dynamics in mouse ventricular myocytes [25], with model improvements from [26] (Fig. 1). We incorporated a β₁-adrenergic signaling pathway in our model of electrical activity and Ca²⁺ handling with modifications [25,26] (see Appendix S1).

Our model cell consists of several compartments (Fig. 1; Appendix S1). For the β₁-adrenergic signaling system we consider three major functional compartments: caveolar (cav), extracaveolar (ecav), and cytosol (cyt) [8,13]. The caveolar compartment is a submembrane compartment associated with the protein caveolin-3. The extracaveolar compartment is also a submembrane compartment associated with cholesterol-rich lipid rafts, but it does not include caveolin-3. Both caveolar and extracaveolar compartments together represent the particulate fraction. The cytosolic compartment (the soluble fraction) represents the rest of the cell volume, excluding mitochondria. As the dynamics of Ca²⁺ concentration does not directly depend on the β₁-adrenergic signaling system, we use the same compartmentalization of Ca²⁺ handling as in Bondarenko et al. [25]. The subspace volume (Vₛ) of the Ca²⁺ handling system is completely located in the extracaveolar compartment of the β₁-adrenergic signaling system.

Total protein concentrations and their activities are normalized to the cell volume as in [8]. In most cases, we used Table 9 from [27] to convert protein concentrations from pmol/mg cell protein to the concentrations in μM. The localization of different signaling proteins and protein kinase A substrates in subcellular compartments can be found in Fig. 1 and Appendix S1 and will be described below in the corresponding chapters. The experimental data in the Methods chapter are used for constraining the model; the experimental data in the Results chapter are used for testing the developed model. The latter experimental data were not used for constraining the model.

In all compartments, the β₁-adrenergic signaling system is activated by agonist (isoproterenol) (Fig. 1). Stimulation of β₁-ARs leads to activation of the stimulatory G protein, G₁s, which dissociates into Gₛα and Gₛβ₃ subunits. Both subunits activate adenyl cyclases [AC5/6 or AC4/7, depending on the cellular compartment], which produce cyclic AMP. cAMP is degraded by phosphodiesterases, three isoforms of which, PDE2, PDE3, and PDE4, are included in our model. Balanced activities of ACs and PDEs establish steady-state levels of cAMP in different compartments. cAMP further activates protein kinase A holoenzyme, which consists of two regulatory and two catalytic subunits. Binding four cAMP molecules to PKA holoenzyme causes...
respectively), the sarcolemmal Ca2+ currents (ICab and INab). The Ca2+ delayed rectifier K+ rectifier (IK1), are localized in the extracaveolae compartment; and phospholamban and troponin I are located in the cytosolic compartment (more details are shown below).

Figure 1. Schematic representation of the β1-adrenergic signaling system in mouse ventricular myocytes. Transmembrane currents are the fast Na+ current (INa), the two components of the L-type Ca2+ current in caveolae and extracaveolae compartments (ICaL,cav and ICaL,ecav, respectively), the sarcolemmal Ca2+ pump (ICal, PLM), the Na+/Ca2+ exchanger (INaCa), the rapidly recovering transient outward K+ current (IKto,f), the noninactivating steady-state voltage activated K+ current (IKur), the time-independent K+ current (IK1), the Na+/K+ pump (INaK, is regulated by phospholemman, PLM), the Ca2+ and Na+ background currents (ICab and INab). The Ca2+ fluxes are uptake of Ca2+ from the cytosol to the network sarcoplasmic reticulum (NSR) (Jup) by the SERCA pump and Ca2+ release from the junctional sarcoplasmic reticulum (JSR) (Jrel) through the ryanodine receptors (RyRs). There are three intracellular compartments in the β1-adrenergic signaling system: caveolae, extracaveolae, and cytosol. The subspace volume (Vss) is located in the extracaveolae domain. Components of the β1-adrenergic signaling system are the β1-adrenergic receptors (β1-AR), the α-subunit of stimulatory G-protein (Gsα), the β1-subunit of stimulatory G-protein (Gsβ), the adenyl cyclases of type 5/6 or 4/7 (AC5/6 or AC4/7, respectively), the phosphodiesterases of type 2, 3, or 4 (PDE2, PDE3, or PDE4, respectively), the cyclic AMP (cAMP), regulatory (R) and catalytic (C) subunits of protein kinase A holoenzyme, the protein kinase inhibitor (PKI). Intracellular proteins are dephosphorylated by two types of phosphatases, protein phosphatase of type 1 or 2A (PP1 or PP2A, respectively), or 4 (PDE2, PDE3, or PDE4, respectively), the cyclic AMP (cAMP), regulatory (R) and catalytic (C) subunits of protein kinase A holoenzyme, the protein kinase inhibitor (PKI), the G-protein-coupled receptor kinase of type 2 (GRK2), the protein phosphatases of type 1 or 2A (PP1 or PP2A, respectively), the inhibitor-1 (I-1). The cytosolic proteins which are the substrates of the kinase or inhibitor module are located in the subspace (Vss). The total concentration of β1-ARs is 0.0103 μM [29]. In our model, we distribute the β1-ARs almost evenly between the extracaveolae and cytosolic compartments, with only 1% located in the caveolae compartment (see Appendix S1). Such distribution of β1-ARs allowed us to obtain in the model approximately equal cAMP transients in the caveolae and extracaveolae compartments, which is in line with the measurements of local cAMP concentrations in similar compartments in rat and mouse ventricular myocytes [30]. In the β1-adrenergic receptor module, we separate relatively fast biochemical reactions (ligand-receptor and G-protein-receptor interactions, with time scales of tens milliseconds [31]), which are described by algebraic equations in steady-state approximation, and slower reactions.

Model Development: Biochemical Part

β1-adrenergic receptor module. According to the experimental findings [19,20,28], the vast majority of β1-adrenergic receptors are located in non-caveolae fractions. The estimated total concentration of β1-ARs in mouse ventricular myocytes is 0.0103 μM [29]. In our model, we distribute the β1-ARs almost evenly between the extracaveolae and cytosolic compartments, with only 1% located in the caveolae compartment (see Appendix S1). Such distribution of β1-ARs allowed us to obtain in the model approximately equal cAMP transients in the caveolae and extracaveolae compartments, which is in line with the measurements of local cAMP concentrations in similar compartments in rat and mouse ventricular myocytes [30]. In the β1-adrenergic receptor module, we separate relatively fast biochemical reactions (ligand-receptor and G-protein-receptor interactions, with time scales of tens milliseconds [31]), which are described by algebraic equations in steady-state approximation, and slower reactions.

dissociation of two catalytic subunits that phosphorylate target proteins, among them are PDE3 and PDE4. β1-ARs are phosphorylated by PKA, as well as by G protein coupled receptor kinase of type 2 (GRK2). PKA is also regulated by heat-stable protein kinase inhibitor (PKI). Intracellular proteins are dephosphorylated by two types of phosphatases, protein kinase phosphatase 1 and 2A. PKA target proteins are located in different compartments. In our model, 20% of the L-type Ca2+ channels (the L-type Ca2+ current, ICaL), the fast Na+ current, INa, and the phospholemman, which regulates the Na+/K+ pump, INaK, are localized in the caveolae compartment; 80% of the L-type Ca2+ channels, the ryanodine receptors, RyRs, the ultra-rapidy activating delayed rectifier K+ current, IKur, the rapidly inactivating transient outward K+ current, IK1, and the time-independent K+ current, IK1, are located in the extracaveolae compartment; and phospholamban and troponin I are located in the cytosolic compartment (more details are shown below).
Adenylyl cyclase module. In a β1-adrenergic pathway, adenylyl cyclases are responsible for synthesis of cAMP from ATP. Our model includes four major types of adenylyl cyclases (AC) found in mouse ventricular myocytes, AC4, AC5, AC6, and AC7 [33,34]. Two of them, AC5 and AC6, are located in caveolae and have similar properties (we denote them as AC5/6) [35]. Two others, AC4 and AC7, also have similar properties: they do not co-immunoprecipitate with caveolin-3 and they are excluded from caveolae (we denote them as AC4/7) [13,28,36].

We simulated activation of adenylyl cyclases by the α-subunit of G-protein, Gαs, [8,13] (see Appendix S1). In addition, we considered the simulation of adenylyl cyclase AC5/6 and AC4/7 by βγ-subunit, Gβγ, according to the experimental data [37,38,39,40]. The total amount of adenylyl cyclases in a cardiac cell is estimated as 0.02622 μM [41], with 74% of AC5/6 type [8].

Figure 3A shows experimental data on activation of AC5 and AC6 by Gαs [37] and corresponding simulation data using our model for AC5/6 activation. In Fig. 3B, simulation data on activation of AC4/7 by Gβγ is compared to the experimental data for AC4 [38,40]. Figures 3C and 3D compare the experimental data from [39,40] to our simulations for the dependence of AC5/6 and AC4/7 activities on Gβγ. Both figures show good agreement between the experimental and simulated results.

We also simulated the effects of different concentrations of β1-adrenoceptor agonist isoproterenol on adenylyl cyclase activity in mouse ventricular myocytes (Fig. 4A). Experimental data on total AC activity in mouse ventricles and cardiac cells as a function of isoproterenol concentration after 10-min exposures are shown by unfilled [42] and filled circles [43] with error bars. Simulation data on AC activity at the 10th minute after the exposure to different concentrations of isoproterenol are shown by a solid line. As seen in Fig. 4A, our model was able to reproduce absolute values of the total cellular adenylyl cyclase activity as a function of isoproterenol.
Adenylyl cyclase activity can also be used as an indicator of desensitization of β₁-ARs. Experimental data on AC activity as a function of isoproterenol were obtained by Freedman et al. [32] at three time moments after exposure to an agonist (at the maximum activity (from 50th to 75th seconds, depending on isoproterenol concentration), 5th min, and 30th min). It is shown that the AC activity decreases in time, reflecting β₁-ARs desensitization (phosphorylation by PKA and GRK2) (symbols in Fig. 4B). Our model satisfactorily reproduced this phenomenon. Simulation data also demonstrates the decrease in AC activity as a function of time at different concentrations of isoproterenol (solid, dashed, and dash-dotted lines in Fig. 4B).

Phosphodiesterase module. Phosphodiesterases in the β₁-adrenergic signaling system degrade cAMP into inert molecule 5'-AMP. We included in our model three major types of phosphodiesterases (PDE2, PDE3, and PDE4) found in mouse ventricular myocytes [44]. While a significant amount of PDE1 was found in mouse ventricles, the study of Bode et al. [45] shows that this type of PDE is predominantly located in non-myocyte cells. As in previous models [8,13], we put PDE2, PDE3, and PDE4 into the caveolar and cytosolic compartments, and PDE2 and PDE4 into the extracaveolar compartment. Such distribution fits available experimental data on their localization [46,47]. For subcellular distribution of the PDE isoforms we used experimental data obtained by Mongillo et al. [48] for rat ventricular myocytes, and the parameters were adjusted to fit experimental data on PDE2, PDE3, and PDE4 activities in mouse hearts [44,49].

PDE2, PDE3, and PDE4 are activated by cAMP molecules, but with different affinities (see Appendix S1). In addition, phosphorylation of PDE3 and PDE4 increases their activities by several folds. These processes are simulated by ordinary differential equations derived for three subcellular compartments (caveolae, extracaveolae, and cytosol, see Appendix S1). Our model also tested the effects of non-specific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX).

Figure 5A shows experimental and simulated absolute activities of PDE2, PDE3, and PDE4 in mouse and rat hearts. There are some differences in the magnitudes of experimental contributions of different PDE isoforms in total cellular PDE activity obtained by different research groups and between species. However, these
Adrenergic Signaling in Mouse Myocytes

Figure 4. Adenylyl cyclase activity as a function of isoproterenol. Panel A: Experimental data on AC activity (in pmol/mg/min) in mouse hearts and ventricular myocytes obtained after 10-minutes exposure to isoproterenol are shown by unfilled circles [42] and filled circles [43]. The solid line shows corresponding simulated AC activities at different concentrations of isoproterenol. Panel B: Desensitization of \(\beta_1 \)-ARs. Increase in adenylyl cyclase activities above basal level (in %) are measured at maximum (from 50th to 75th seconds, control, filled circles) and at two time moments (5 min and 30 min, unfilled circles and unfilled squares, respectively) after exposure to different concentrations of isoproterenol [32]. Corresponding simulated data for the maximum, 5-minute, and 30-minute delays are shown by solid, dashed, and dash-dotted lines, respectively.

doi:10.1371/journal.pone.0089113.g004

Other experimental data suggest half-activation constants, \(K_{PKAI,1} \) and \(K_{PKAII,1} \). Some experimental data suggest half-activation constants for \(K_{PKAI,2} \approx 0.1 \mu M \) [50,51] and \(K_{PKAI,1} \approx 0.5 \mu M \) [51], one of which is significantly smaller and the other is comparable to the resting \(cAMP \) concentrations in cardiac cells \(\approx 0.5–1 \mu M \) [52,53]. Under such conditions, almost all PKA in the cytosol and most PKA in the caveolar and extracaveolar compartments must be activated. Other experimental data suggest \(K_{PKAI} \) and \(K_{PKAII} \) in the range \(1.5–3 \mu M \) [54,55,56]. As it was pointed out by Dao et al. [55], relatively small values of \(K_{PKAI,1} \) and \(K_{PKAII,1} \) in the nanomolar range were obtained in some experiments because they used free regulatory subunits RI or RII instead of PKA holoenzymes. Experimental data with PKA holoenzymes yielded significantly larger dissociation constants, which are used in our model \((K_{PKAI,1} = 0.5 \mu M \) and \(K_{PKAII,1} = 2.5 \mu M \) [55]). Activation of PKA holoenzyme is described by ordinary differential equations (see Appendix S1). In addition, the model includes inhibition of PKA by heat-stable protein kinase inhibitor (PKI), the dynamics of which are also described by a differential equation.

Figure 4A shows activation levels of PKAI and PKAII as functions of \(cAMP \) concentrations. We used experimental data [54,55] shown by circles (PKAI) and squares (PKAII). Our simulations are displayed by a solid (PKAI) and a dashed (PKAII) line, respectively. They fit reasonably well to the experimental data. We also simulated the cellular PKA activity ratio in control and upon stimulation of the \(\beta_1 \)-adrenergic signaling system by 1 \(\mu M \) isoproterenol (Fig. 6B). Four simulations were performed for this figure: no isoproterenol/basic \(cAMP \) level (−\(cAMP \)), no isoproterenol/3 \(\mu M \) \(cAMP \) (+\(cAMP \)), 1 \(\mu M \) isoproterenol/no externally applied \(cAMP \) (−\(cAMP \)), and 1 \(\mu M \) isoproterenol/5 \(\mu M \) \(cAMP \) (+\(cAMP \)). Then, the corresponding PKA/(−\(cAMP \)/
PKA(+cAMP) ratios were calculated. The simulations (grey bars) compare well to the experimental data for the rabbit hearts obtained in control and after application of 1 mM isoproterenol (black bars [57]).

The effect of a heat-stable protein kinase inhibitor (PKI) on the PKA activity is shown in Fig. 6C. Experimental data obtained from [54] for PKA II are shown by filled circles, and simulation results are plotted by a solid line for PKA I and by a dashed line for PKA II. PKA activities are calculated with and without PKI at different concentrations of cAMP, then their ratios were calculated (in %) and subtracted from 100%. As seen from Fig. 6C, model simulations fit reasonably well to the experimental data.

Protein phosphatases and inhibitor-1 module. There are two major types of protein phosphatases which are important for cardiac myocyte function, protein phosphatase 1 (PP1) and 2A (PP2A). Localization of PP1 and PP2A in three subcellular compartments can be determined by their co-localization with caveolin-3 and by modulation of their targets. Data of Hescheler et al. [58] and Balijepalli et al. [19] show that the L-type Ca^{2+} current is inhibited by both PP1 and PP2A, and that the portion of the L-type Ca^{2+} channels and PP2A co-localize with caveolin-3, suggesting caveolae localization for both PP1 and PP2A. PP1 and PP2A are also localized in the cytosolic compartment, as they interact with phospholamban and troponin I [59,60]. In mouse hearts, PP1 is the predominant phosphatase, whose contribution to the total phosphatase activity is ~75% [61,62]. As there is no current consensus on whether PP1 or PP2A is predominant in the extracaveolae compartment [63], we assume that only PP1 contributes to phosphatase activity in extracaveolae. We use basically the same molar distribution of PP1 and PP2A in subcellular compartments as Heijman et al. [8] (see Appendix S1), provided that 75% and 25% of cellular phosphatase are of PP1 and PP2A, respectively, as found experimentally in mice [61,62].

In ventricular myocytes, protein phosphatase 1 is regulated by endogenous inhibitor-1 (I-1) [64]. I-1 is localized in the cytosolic compartment and inhibits PP1 activity when phosphorylated. Cellular concentration of I-1 is estimated as [Inhib]_{tot} = 0.08543 μM [65]. Ablation of I-1 leads to a moderate increase in PP1 activity and impaired β_{1}-adrenergic function [64,65]. As the affinity of I-1 to PP1 is very high (K_{I_{1}} = 1 nM),
different concentrations of cAMP, then their ratio was calculated (in %) externally applied cAMP (also performed four simulations: no isoproterenol/basic level cAMP (PKA II) line. Panel A: PKA activity ratio. Experimental data were obtained without (∼cAMP) and with (+cAMP) externally applied 3 μM cAMP, both without and with 1 μM isoproterenol (black bars [57]). We also performed four simulations: no isoproterenol/basic level cAMP (∼cAMP), no isoproterenol/3 μM cAMP (+cAMP), 1 μM isoproterenol/no externally applied cAMP (∼cAMP), and 1 μM isoproterenol/3 μM cAMP (+cAMP). Then, the corresponding PKA ratios were calculated. Panel C: Protein kinase A inhibition by a heat-stable protein kinase inhibitor PKI. Experimentally, PKA activities were measured with and without PKI at different concentrations of cAMP, then their ratio was calculated (in %) and subtracted from 100% (filled circles, [54]). Corresponding simulation data for PKA I and PKA II are shown by solid and dashed lines. Concentration of [PKI]tot = 2.0·2·[PKA]tot.

doi:10.1371/journal.pone.0089113.g006

we used steady-state approximation to describe I-1-PP1 interaction with corresponding mass conservation relationships:

\[
[I_{\text{inhib}}]_{p,\text{tot}}^{\text{cyt}} = \frac{[I_{\text{inhib}}]_{\text{p}}^{\text{cyt}} + \frac{[PP1]_{\text{f}}^{\text{cyt}} \cdot [I_{\text{inhib}}]_{\text{p}}^{\text{cyt}}}{K_{\text{inhib}}}}{1}
\]

\[
[PP1]_{\text{f},\text{tot}} = \frac{[PP1]_{\text{f}}^{\text{cyt}} \cdot [I_{\text{inhib}}]_{\text{p}}^{\text{cyt}}}{K_{\text{inhib}}}
\]

\[
[I_{\text{inhib}}]_{\text{f},\text{tot}} = \frac{[I_{\text{inhib}}]_{\text{f}}^{\text{cyt}} + [I_{\text{inhib}}]_{\text{p},\text{tot}}^{\text{cyt}}}{1}
\]

where \([I_{\text{inhib}}]_{\text{p},\text{tot}}^{\text{cyt}}\) is the total concentration of phosphorylated I-1 in cytosol, \([I_{\text{inhib}}]_{\text{p}}^{\text{cyt}}\) is the unbound phosphorylated I-1 concentration, \([I_{\text{inhib}}]_{\text{f}}^{\text{cyt}}\) is the non-phosphorylated I-1 concentration, \([PP1]_{\text{f}}^{\text{cyt}}\) is the total concentration of PP1 in cytosol, and \([PP1]_{\text{f}}^{\text{cyt}}\) is the unbound PP1 concentration. Solution of equations (3) – (5) gives the equations for calculating \([I_{\text{inhib}}]_{\text{p}}^{\text{cyt}}, [I_{\text{inhib}}]_{\text{f}}^{\text{cyt}}, [PP1]_{\text{f}}^{\text{cyt}},\) and \([PP1]_{\text{f}}^{\text{cyt}}\) (see equations (A.124) – (A.129) in the Appendix S1). Phosphorylation and dephosphorylation of I-1 occurs by the catalytic subunit of PKA and PP2A, respectively [64,66], and is described by equation (A.130) (see Appendix S1).

Figure 7A shows the effects of activation of the β1-adrenergic signaling system by 1 μM isoproterenol on inhibitor-1 activity. As there is no data for mice, we used the experimental data from guinea pig hearts [67] which shows significant activation of I-1 from ∼20% to ∼80% of its maximum activity. Our model reproduced the experimental data on I-1 activation. The effects of I-1 on PP1 activity can be estimated from data obtained from WT and I-1 knockout mice [64]. Figure 7B shows a slight increase in PP1 activity upon I-1 ablation (activity of PP1 in I-1 knockout mice is normalized to 100%). In the model, the effect of I-1 knockout is simulated by setting \([I_{\text{inhib}}]_{\text{f}}^{\text{cyt}} = 0\), which leads to a slightly smaller increase in PP1 activity compared to that found experimentally.

cAMP dynamics. cAMP is one of the major signaling small molecules in the β1-adrenergic signaling system. It moves freely between cellular compartments and has PKA as a major target. cAMP concentration is determined by the balance between cAMP production by adenylyl cyclases, cAMP degradation by phosphodiesterases, and cAMP diffusion between intracellular compartments (caveolae, extracaveolae, and cytosol) (see (A.131)-(A.133) in Appendix S1). Phosphorylation and dephosphorylation of I-1 occurs by the catalytic subunit of PKA and PP2A, respectively [64,66], and is described by equation (A.130) (see Appendix S1).
in Fig. 8A shows corresponding simulated time behavior of cAMP. Both simulated and experimental data show transient increase in cAMP concentration, which is due to changes in cAMP production by adenylyl cyclases, cAMP degradation by phosphodiesterases, cAMP fluxes between compartments, and β₁-ARs desensitization.

PKA dynamics. Our model is able to reproduce the time course of the cellular PKA activity, which is determined by the cellular concentration of catalytic subunit (solid line in Fig. 8B). As there is no data for mice, we used data of Buxton and Brunton [57] (unfilled circles in Fig. 8B) obtained for rabbit ventricular myocytes to constrain the model. Similar to cAMP dynamics, both experimental and simulation data for PKA demonstrate transient increase in activation, with subsequent decrease in activity.

Figure 7. The effects of β₁-adrenoceptor stimulation on activities of I-1 and PP1. Panel A: Relative I-1 activity in ventricular myocytes in control (left bars) and upon stimulation with 1 μM isoproterenol (right bars). Experimental data for guinea pig hearts [67] are shown by black bars, simulation data with our model are shown by gray bars. Panel B: Relative PP1 activity in WT and I-1 knockout mouse hearts. Experimental data [64] are shown by black bars, our simulations – by gray bars. Experimental PP1 activity from I-1 knockout mouse hearts is normalized to 100%. doi:10.1371/journal.pone.0089113.g007

Figure 8. cAMP and PKA dynamics in mouse ventricular myocytes. Panel A: cAMP dynamics in ventricular myocytes. Experimental data of normalized cAMP in mouse [68] and rabbit [57] ventricular myocytes are shown by unfilled and filled circles, respectively; simulation data is shown by a solid line. Panel B: PKA dynamics in ventricular myocytes. Experimental data of normalized PKA activity in rabbit [57] ventricular myocytes are shown by unfilled circles; simulation data is shown by a solid line. Data in Panels A and B was obtained upon application of 1 μM isoproterenol. doi:10.1371/journal.pone.0089113.g008

Model Development: Electrophysiological Part

Electrical activity of the mouse ventricular myocytes is described by the equation for transmembrane potential [25]:

\[
\frac{dV}{dt} = -\frac{1}{C_m} (I_{CaL} + I_{K(Ca)} + I_{NaCa} + I_{Cab} + I_{Na} + I_{NaK} + I_{Kto,f} + I_{K1} + I_{Kur} + I_{Kss} + I_{Kr} + I_{Cl} - I_{stim}).
\]

where \(I_{CaL}\) is the L-type Ca^{2+} current, \(I_{K(Ca)}\) is the sarcolemmal Ca^{2+} pump, \(I_{NaCa}\) is the Na^{+}/Ca^{2+} exchanger, \(I_{Cab}\) is the Ca^{2+} background current, \(I_{Na}\) is the fast Na^{+} current, \(I_{NaK}\) is the Na^{+} background current, \(I_{NaK}\) is the Na^{+}-K^{+} pump, \(I_{Kto,f}\) is the rapidly recovering transient outward K^{+} current, \(I_{K1}\) is the time-independent K^{+} current, \(I_{Kur}\) is the ultrarapidly activating delayed rectifier K^{+} current, \(I_{Kss}\) is the noninactivating steady-state voltage activated K^{+} current, \(I_{Kr}\) is the rapid delayed rectifier K^{+} current,
I_{Ca,L} \text{is the Ca}^{2+}-\text{activated chloride current, and I_{sim} is the stimulus current.}

In our model, we consider four of these currents (I_{Ca,L}, I_{Na}, I_{K_{iso}}, and I_{Km}) as the substrates of the β1-adrenergic signaling system. The Na/K pump is affected by β1-ARs through phosphorylation of phospholemman. One more current, I_{K1}, is also affected by β1-ARs; however, in the voltage range from about −80 to +40 mV, this current does not change significantly. In addition, there are three other phosphorylation substrates, which are the major players in Ca^{2+} dynamics and are affected by β1-ARs: ryanodine receptors, phospholamban, and troponin I. We consider all these β1-adrenergic receptor substrates below as separate modules in the model.

L-type Ca^{2+} current module. As found experimentally, the L-type Ca^{2+} channels are located in both the caveolae and the extracaveolae compartments [19,21,22,69]. About 80% of the L-type Ca^{2+} channels are found within Ca^{2+} release units, or couplers [21], which are localized in the extracaveolae compartment, contribute directly to excitation–contraction coupling, and are the targets of the β1-adrenergic signaling system [22,70]. The other 20% of the L-type Ca^{2+} channels are found in the caveolae [19,22]. The total amount of L-type Ca^{2+} channel protein can be estimated from the experimental data on the amount of RyRs in the mouse hearts (1058 ± 45 fmol/mg protein, or 0.1993 μM [71]) and dihydrorhodamine (DHRP) receptor-to-RyRs ratio for rats (RyR/DHRP = 7.3 [72]), resulting in \([I_{Ca,L}]_{0} = 0.0273 \mu M\). In the presented model, 20% and 80% of the L-type Ca^{2+} channels are localized in the caveolae and the extracaveolae compartments, respectively.

Effects of the β1-adrenergic signaling system on the L-type Ca^{2+} channels and channel gating can be described with a Markov model for non-phosphorylated and phosphorylated states (Fig. 9A). The model includes two activation pathways: one for non-phosphorylated and one for phosphorylated channels. Each pathway includes five closed, one open, and three inactivated states. Transitions between non-phosphorylated and phosphorylated states are determined by the rates of phosphorylation by PKA and dephosphorylation by PP1 and PP2A (see Appendix S1). As we were unable to reproduce the experimental data on isoproterenol effects on the L-type Ca^{2+} channels with the Markov model from [25,26] due to the high maximum opening probability for the channels at large depolarizations, we introduced a voltage-independent rate limiting step and a new closed state (Cp, closed pre-open state) in the new model (Fig. 9A), which reduced the opening probability for non-phosphorylated channels compared to the models of Bondarenko et al. [25] and Petkova-Kirova et al. [26]. Experimental data shows that the stimulation of β1-ARs increases the maximum of the L-type Ca^{2+} current and causes a hyperpolarization shift in normalized channel conductance (G/G_{max}) and a steady-state inactivation relationship in mouse ventricular myocytes [73,74,75]. These effects are simulated by several changes to the phosphorylated pathway in the model (see Appendix S1) and an increase in G_{Ca,L} (G_{Ca,L} = 2.09\mu M) according to the estimation of an increase in maximum opening probability for cardiac Ca^{2+} channels from [76].

Model parameters are adjusted to fit experimental data on both the basal L-type channel phosphorylation level and the time course of the current amplitude upon stimulation with isoproterenol. Experimental data suggest the basal phosphorylation level of the L-type Ca^{2+} channels in ventricular myocytes to be about 13–20% [77,78]. In our model, a fraction of phosphorylated channels under basal conditions is set to 10.3%. Upon application of 1 μM isoproterenol, peak values of I_{Ca,L} increase in time upon stimulation with voltage pulses to 0 mV, as is seen from the experimental data [75] (Fig. 9B). Our model reproduces the time course of the peak current increase under similar stimulations (solid line in Fig. 9B). It is remarkable that the simulated time course of the peak current increase (solid line in Fig. 9B) is very similar to the simulated time course of the relative phosphorylation level of the L-type Ca^{2+} channels (dashed line in Fig. 9B).

In addition to the time course of I_{Ca,L} increase, we simulated magnitudes of I_{Ca,L} increase after a 600-second exposure to different concentrations of isoproterenol (Fig. 9C). We evaluated the effects of isoproterenol on the total I_{Ca,L} (I_{Ca,L tot} black bold line in Fig. 9C) as well as on I_{Ca,L} populations localized in the caveolae (I_{Ca,L,cav} green line in Fig. 9C) and extracaveolae (I_{Ca,L,ex}, red line in Fig. 9C) compartments. The results of simulations for the total I_{Ca,L} are in a good agreement with the experimental data obtained by Kim et al. [79], Sako et al. [80], and Miraai et al. [81] (Fig. 9C). Simulations also show that the effects of β1-adrenergic receptor agonist is significantly stronger on the channels localized in the extracaveolae compartment (2.03 folds at 1 μM Iso) compared to the channels in the caveolae compartment (1.42 folds at 1 μM Iso). If the caveolae-located I_{Ca,L} is responsible for ~20% of the total current amplitude in control, after exposure to isoproterenol (1 μM) this fraction decreases to ~15%. The results of simulations are in line with the experimental data of [70] who have shown that the I_{Ca,L} from the population of channels in the caveolae compartment comprises about 15% of the total current.

In addition to the effects of activation of the β1-adrenergic signaling system, our model is tested in respect to the effects of inhibition of phosphatase activity on the L-type Ca^{2+} current. Figure 9D shows simulated I_{Ca,L} traces under heavy buffer conditions (with suppression of Ca^{2+}-induced Ca^{2+} release) elicited by voltage pulses to 0 mV in control (solid line) and after 1000-s exposure to 1 μM Calyculin A (dashed line) and 600-s exposure to 1 μM isoproterenol (dotted line). In simulations, we consider that Calyculin A inhibits 65% of the activity of both PP1 and PP2A. As seen from simulations in Fig. 9D, both isoproterenol and Calyculin A increase peak currents to different degrees, suggesting that both activation of PKA and inhibition of PP1 and PP2A increase the L-type Ca^{2+} current. Fitting simulated time courses from Fig. 9D yields bi-exponential inactivation of I_{Ca,L} with two time constants. Fast (Ca^{2+}-dependent inactivation) and slow (voltage-dependent inactivation) time constants are equal to 7.77 and 22.0 ms, 7.19 and 19.9 ms, and 6.54 and 18.5 ms for control (solid line), after 1000-s exposure to 1 μM Calyculin A (dashed line) and 600-s exposure to 1 μM isoproterenol (dotted line), respectively. These data show significant increase in Ca^{2+}-dependent inactivation of I_{Ca,L} upon stimulation of the β1-adrenergic signaling system. Similar behavior of I_{Ca,L} is also observed experimentally with BAPTA in pipette solution [73]. Insert in Fig. 9D shows similar simulations with intact Ca^{2+}-induced Ca^{2+} release. In the last case, current traces also show bi-exponential decay with the fast and slow time constants 4.83 and 12.4 ms, 4.72 and 12.0 ms, and 4.66 and 12.8 ms for control (solid line), after 1000-s exposure to 1 μM Calyculin A (dashed line), and 600-s exposure to 1 μM isoproterenol (dotted line), respectively. These data show significant increase in the L-type Ca^{2+} current inactivation with intact Ca^{2+} dynamics. Simulations also show that activation of β1-ARs increases peak current amplitudes by about two-fold (Fig. 9E) and causes a hyperpolarization shift in steady-state inactivation relationships (Fig. 9F) and more moderately in G/G_{max} data (Fig. 9G). Inhibition of PP1 and PP2A produced an intermediate effect on the I_{Ca,L} in terms of an increase in amplitude and a hyperpolarization shift of steady-state inactivation relationships and G/G_{max}. Similar increases in amplitudes and
The effects of β1-adrenoceptor stimulation on the L-type Ca2+ current. **Panel A:** Markov model of the L-type Ca2+ channel. State diagram consists of two similar sub-diagrams for non-phosphorylated (upper sub-diagram) and phosphorylated states (lower sub-diagram): C\textsubscript{1}, C\textsubscript{2}, C\textsubscript{3}, C\textsubscript{4}, and C\textsubscript{0} are closed states; O is the open state; I\textsubscript{1}, I\textsubscript{2}, and I\textsubscript{3} are inactivated states; C\textsubscript{1p}, C\textsubscript{2p}, C\textsubscript{3p}, and C\textsubscript{4p} are closed phosphorylated states; O\textsubscript{p} is the open phosphorylated state; and I\textsubscript{1p}, I\textsubscript{2p}, and I\textsubscript{3p} are phosphorylated inactivated states. The rate constants \(g \), \(\gamma \), and \(\beta \) are voltage-dependent; \(\gamma \) is calcium dependent; \(k_{\text{phos}} \), \(k_{\text{dephos}} \), \(k_{\text{pco}} \), \(k_{\text{oc}} \), and \(k_{\text{cop}} \), are voltage-insensitive; and \(k_{\text{pco}} \), \(k_{\text{oc}} \), \(k_{\text{cop}} \), and \(k_{\text{dephos}} \) are the phosphorylation and dephosphorylation rates, respectively (see Appendix S1). **Panel B:** Time course of the peak values of L-type Ca2+ current and L-type Ca2+ channel phosphorylation level upon stimulation with 1 μM isoproterenol. Experimental data for peak IC\textsubscript{CaL} is obtained by a series of pulses to 0 mV for 200 ms from a holding potential of −80 mV with a frequency of 0.2 Hz [75]. Modeling data are obtained by a series of pulses to 0 mV for 50 ms from a holding potential of −80 mV with a frequency 0.04 Hz. Increase in phosphorylation level is determined as a fractional increase related to the total increase in phosphorylation of L-type Ca2+ channels at 150th s after application of isoproterenol. **Panel C:** Peak L-type Ca2+ current as a function of isoproterenol concentration. Experimental data are obtained by Kim et al. [79] (filled circles), Sako et al. [80] (unfilled circles), and Mitarai et al. [81] (filled squares). Simulation data is obtained by a voltage pulse to 0 mV from a holding potential of −80 mV after a 600-second exposure to different concentrations of isoproterenol. Simulation data for the total cellular IC\textsubscript{CaL,tot}, the caveolae-localized IC\textsubscript{CaL,cav}, and the extracaveolae-localized IC\textsubscript{CaL,ecav} are shown by black, green, and red solid lines, respectively. **Panel D:** Same simulations performed with intact Ca2+-induced Ca2+ release. **Panel E:** Peak current-voltage (I–V) relationships for IC\textsubscript{Na} in control (filled circles) and after exposure to Calyculin A (unfilled circles) and isoproterenol (filled squares). **Panel F:** Steady-state inactivation relationships for IC\textsubscript{Na} in control (filled circles) and after exposure to Calyculin A (unfilled circles) and isoproterenol (filled squares). In panels **E** and **F**, currents are obtained by the two-pulse protocols: a 500-ms depolarizing first pulse to between −70 and −50 mV (in 10-mV increment) is applied from a holding potential of −80 mV; this is followed by a second 500-ms pulse to +10 mV. Simulations are performed without Ca2+-induced Ca2+ release to account for heavy buffer conditions.

The resulting model for the fast Na+ current was tested against the experimental data on the time course of INa activation, its dependence on the isoproterenol concentration, and voltage-clamp experiments (Fig. 10). As there is no data for mice, we used the experimental time course of the activation of INa by 0.1 μM isoproterenol obtained from rabbit ventricular myocytes (filled circles in Fig. 10B). Figure 10B shows a good agreement between the experimental and simulated time dependences of INa amplitude upon stimulation of the β1-adrenergic signaling system. A similar time course is demonstrated by the simulated fraction of phosphorylated and trafficking Na+ channels (solid line in Fig. 10B). The model also reproduced the concentration dependence of an increase in Na+ channel availability at different concentrations of isoproterenol (Fig. 10C).

Experimental data shows an increase in the fast Na+ current amplitude upon stimulation with 0.1 μM isoproterenol (Fig. 10D, unfilled and filled circles). A similar increase is obtained from our Markov model for Na+ channels (solid and dashed lines in Fig. 10D are for control and 0.1 μM isoproterenol, respectively). Neither the experimental data (unfilled and filled circles in Fig. 10E) nor the simulations (solid and dashed lines in Fig. 10E) demonstrate significant changes in steady-state inactivation relationships.

Ryanodine receptor module. Experimental studies of ryanodine receptors in rat ventricular myocytes provided evidence of their co-localization in couplons with the L-type Ca2+ channels (in dyads, or subspace volume V\textsubscript{a} or in close proximity to those couplons [21,22,91]). Between 80 to 85% of ryanodine receptors are localized in V\textsubscript{a} and the rest are very close to dyads, which suggests their involvement in Ca2+-induced Ca2+ release [21,91].

hyperpolarization shifts are also observed experimentally [73]. Therefore, our model for the β1-adrenergic signaling system is able to simulate the effects of activation of PKA and inhibition of PP1 and PP2A on the L-type Ca2+ current, IC\textsubscript{CaL}.

Fast Na+ current module. The channels responsible for the fast Na+ current, IC\textsubscript{Na}, which are encoded by Nav.1.5 subunit, are found in the caveolae compartment [16,69,82]. Using both immunoblot analysis and imaging technique, Yarborough et al. [82] provided evidence of co-localization of the fast Na+ channels and caveolin-3 in rat cardiomyocytes, suggesting their localization in the caveolae compartment. Similar data were also obtained by Shibata et al. [69] by using immunogold labeling of plasma membranes from rat cardiomyocytes, where Nav.1.5 subunits were co-localized on electron microscope images with caveolin-3. In addition, Palignin et al. [83] provided evidence of the involvement of caveolin-3 in isoproterenol-induced enhancement of IC\textsubscript{Na} in ventricular myocytes.

Activation of the β1-adrenergic signaling system with isoproterenol leads to an increase in the amplitude of IC\textsubscript{Na}, however, without the effects on gating properties of the channel [84,85]. Simultaneous activation of several components of the β1-adrenergic signaling system with cAMP-IBMX-forskolin cocktail or with excessive application of membrane permeant analogue of cAMP, CPT-cAMP (5 mM), results in additional small shift in the G/(G\textsubscript{max}) and steady-state inactivation [86,87,88]. Experimental data of Baba et al. [86] also shows that the inhibition of protein phosphatase PP2A causes an increase in IC\textsubscript{Na}, and the addition of PP2A to pipette solution causes a decrease in IC\textsubscript{Na}, which link phosphorylation level of IC\textsubscript{Na} to its magnitude. Mechanism of the changes in IC\textsubscript{Na} was studied by Zhou et al. [88] in detail. It was shown that, in addition to channel phosphorylation,so-called channel number of functional fast Na+ channels in the cell membrane is due to the channel trafficking. More recent analysis of the effects of PKA on IC\textsubscript{Na} suggested that phosphorylation and trafficking of IC\textsubscript{Na} are related processes: channels' phosphorylation increases trafficking of fast Na+ channels [89].

To simulate these effects, we developed a Markov model for IC\textsubscript{Na} based on the model [25,90], in a similar way as for IC\textsubscript{CaL}, but with some differences. We consider that the amplification of IC\textsubscript{Na} occurs through two processes: phosphorylation of the channels and their subsequent trafficking to the cell membrane. As the kinetics of the two processes are indistinguishable in the experiments, we use only one rate constant to characterize the effect of PKA, \(k_{\text{phos,Na}} \), which includes both channel's phosphorylation and trafficking. Two activation pathways are used, one is for non-phosphorylated channels and another is for phosphorylated-trafficked channels (Fig. 10A). Because isoproterenol does not change the gating properties of IC\textsubscript{Na}, we use the same rate constants for both non-phosphorylated and phosphorylated-trafficked channels. The larger conductance is used for the phosphorylated-trafficked channels (see the fast Na+ current module in Appendix S1). We consider that the fast Na+ channels are dephosphorylated by PP1 and PP2A (Fig. 10A, Appendix S1). The set of equations that describes the fast Na+ channel gating is provided in Appendix S1 (A.180 - A.213).

The resulting model for the fast Na+ current was tested against the experimental data on the time course of IC\textsubscript{Na} activation, its dependence on the isoproterenol concentration, and voltage-clamp experiments (Fig. 10). As there is no data for mice, we used the experimental time course of the activation of IC\textsubscript{Na} by 0.1 μM isoproterenol obtained from rabbit ventricular myocytes (filled circles in Fig. 10B). Figure 10B shows a good agreement between the experimental and simulated time dependences of IC\textsubscript{Na} amplitude upon stimulation of the β1-adrenergic signaling system. A similar time course is demonstrated by the simulated fraction of phosphorylated and trafficking Na+ channels (solid line in Fig. 10B). The model also reproduced the concentration dependence of an increase in Na+ channel availability at different concentrations of isoproterenol (Fig. 10C).

Experimental data shows an increase in the fast Na+ current amplitude upon stimulation with 0.1 μM isoproterenol (Fig. 10D, unfilled and filled circles). A similar increase is obtained from our Markov model for Na+ channels (solid and dashed lines in Fig. 10D are for control and 0.1 μM isoproterenol, respectively). Neither the experimental data (unfilled and filled circles in Fig. 10E) nor the simulations (solid and dashed lines in Fig. 10E) demonstrate significant changes in steady-state inactivation relationships.
Figure 10. The effects of β₁-adrenoceptor stimulation on the fast Na⁺ current. Panel A: Markov model of the fast Na⁺ channel. State diagram consists of two similar sub-diagrams for non-phosphorylated (upper sub-diagram) and phosphorylated-activated states (lower sub-diagram). CNa1p, CNa2p, and CNa3p are closed states; ONa is the open state; ICNa1, ICNa2, and ICNa3 are the fast, intermediate, and slow inactivated states, respectively; ICNa2p and ICNa3p are closed phosphorylated states; ONa is the open phosphorylated state; and IFNa1, IFNa2, and IFNa3p are closed phosphorylated inactivated states. The rate constants for activation, deactivation, inactivation, phosphorylation-trafficking, and dephosphorylation are given in Appendix S1. Panel B: Time course of the activation of the fast Na⁺ current upon application 0.1 μM isoproterenol. Experimental data of Matsuda et al. [85] obtained for the normalized peak I_{Na} in rabbit ventricular myocytes is shown by closed circles. Data is obtained with 40-ms pulses from a holding potential of −100 mV to −30 mV at stimulation frequency 0.2 Hz. A solid line shows the time course of simulated data on relative I_{Na} phosphorylation upon application of 0.1 μM isoproterenol. A dashed line shows the time course of the simulated normalized peak I_{Na} after application of 0.1 μM isoproterenol. The simulated currents are obtained with 20-ms pulses from a holding potential of −140 mV to −30 mV at stimulation frequency 0.04 Hz. Panel C: An increase in peak I_{Na} availability upon application of different concentrations of isoproterenol (in %). Experimental data by Kirstein et al. [84] obtained from rat ventricular myocytes are shown by black bars with errors; corresponding simulation data are shown by gray bars. Peak current-voltage (Panel D) and steady-state inactivation (Panel E) relationships for the fast Na⁺ current in ventricular myocytes upon stimulation with 0.1 μM isoproterenol. Experimental data for rats in the absence (unfilled circles) and presence (filled circles) of 0.1 μM isoproterenol are obtained by Kirstein et al. [84] (holding potential is −100 mV, conditioning pulse duration is 2,500 ms; isoproterenol data is obtained after 10 min of application). Simulated data are shown by solid (no isoproterenol) and dashed (10 min after application of 0.1 μM isoproterenol) lines (data are obtained by two-pulse protocol, holding potential is −140 mV, first pulse duration is 500 ms for voltages from −140 to +40 mV in 10 mV steps, second pulse duration is 50 ms at voltage −20 mV). Isoproterenol increases I_{Na} availability, but does not affect gating properties.

doi:10.1371/journal.pone.0089113.g010

Very small portions (~3.5–9.2%) of ryanodine receptors in mouse ventricular myocytes are shown to co-localize with caveolin-3, but outside of couplers, but their functional significance is unclear [35,92]. Therefore, in the model, we put ryanodine receptors in the extrasarcolemmal compartment. The receptors are subjects of phosphorylation by PKA and dephosphorylation by PPI. The total concentration of RyRs in mouse ventricular myocytes was determined experimentally by Chu et al. [71] and is equal to 0.1993 μM.

A Markov model for ryanodine receptor gating, which includes phosphorylation-dephosphorylation processes, is shown in Fig. 11A. As for two other substrates, I_{CaL} and I_{Na}, we added in the model a Markov model that consists of two populations of the channels, non-phosphorylated and phosphorylated. For non-phosphorylated channels, we employed our previously developed Markov model for RyRs, which contains two closed (C₁ and C₂) and two open (O₁ and O₂) states [25]. We added two closed-phosphorylated (C_{1p} and C_{2p}) and two open phosphorylated (O_{1p} and O_{2p}) states to the model and the transitions between corresponding non-phosphorylated and phosphorylated states (Fig. 11A). Because experimental data suggest slightly increased sensitivity of RyRs to cytosolic Ca²⁺ concentration [93], we sped up the transition rates to a greater magnitude than the backward transition rates for the phosphorylated channels (see Appendix S1). Differential equations, which describe the time behavior of the RyRs’ probabilities in closed and open states, are shown in Appendix S1 (Eqs. (A.214)-(A.222)).

Our model successfully reproduced the time course of the ryanodine receptor phosphorylation upon stimulation of β₁-adrenoceptors. Figure 11B shows experimental time behavior of the relative phosphorylation level of RyRs in rat ventricular myocytes during exposure to 1 μM isoproterenol [94]. A similar time course is demonstrated by our model (solid line in Fig. 11B) and by the experimental data which used a different technique of RyR phosphorylation (by endogenous PKA in canine ventricular myocytes upon application of [γ-³²IP]ATP [95]). Figure 11C (filled circles) shows experimental data on the phosphorylation level of RyRs at different concentrations of isoproterenol [94]. Our model is able to reproduce this dependence as well (solid line in Fig. 11C).

In addition, the model simulated dependence of the RyRs open probability as a function of intracellular Ca²⁺ concentration for non-phosphorylated and phosphorylated channels (Fig. 11D). The experimental data on the effects of PKA on RyRs shows a tiny shift of the dependence of phosphorylated RyRs opening probability towards a smaller cytosolic Ca²⁺ concentration [93]. However, such data were obtained at relatively small luminal Ca²⁺ concentrations (45 nM), which increased sensitivity of RyRs by an order of magnitude compared to normal physiological conditions (compare the data shown by filled and unfilled circles (small luminal Ca²⁺ concentrations) with the data shown by filled squares (normal physiological luminal Ca²⁺ [96])). To estimate the effects of PKA on RyRs, we simulated two dependences of RyRs opening probabilities on cytosolic Ca²⁺: the first is obtained by stimulation of the cell with intact PKA (solid line in Fig. 11D), the second is obtained by setting [PKA]_{tot} = 0 μM. Our model shows a reasonable agreement with the Ca²⁺-dependence of the RyRs opening probability with the experimental data [96], but virtually no change in the sensitivity of phosphorylated RyRs to cytosolic Ca²⁺ concentration. Some deviations between the experimental (filled squares) and simulated (solid line) data at relatively large cytosolic Ca²⁺ concentrations can be due to the method of estimation of the opening probabilities: in the simulations, we used the maximum values of the channel’s opening probabilities, without consideration of the effects of ryanodine receptor inactivation, while in the single-channel experiments, such inactivation is always present and can potentially reduce measured opening probability.

Phospholemman and the Na⁺-K⁺ pump module. Experimental data on the localization of the Na⁺-K⁺ pump shows that ~30–40% of α₁-subunits and 80–90% of β₁-subunits are localized in the caveolea-rich membrane fractions [97]. Another study provided similar data on the Na⁺-K⁺ pump and caveolin-3 co-localization, where ~70% of those proteins are found in the same fractions [98]. Moreover, almost all the Na⁺-K⁺ pump activity was found in caveolae [97,99].

In our model, the phospholemman, which regulates the Na⁺-K⁺ pump, is the third substrate of the β₁-adrenergic signaling system located in the caveolae compartment. Activation of β₁-ARs increases the function of the Na⁺-K⁺ pump by phosphorylation of phospholemman (PLM) through the effective change in dissociation constant K_{Na,K} (12], thereby decreasing intracellular [Na⁺] concentration [100]. An experimental time course of a relative decrease in [Na⁺] in mouse ventricular myocytes after application of 1 μM isoproterenol is shown in Fig. 12A by filled circles. A corresponding simulated time course of a relative PLM phosphorylation level is shown by a solid line. An increase in the phosphorylation level of PLM decreases the Na⁺ half-saturation constant for the current and effectively increases the pumping rate of Na⁺ outside the cell. Both time dependences demonstrate similar behavior.
Figure 11. The effects of β1-adrenoceptor stimulation on ryanodine receptors. Panel A: Markov model of ryanodine receptors. State diagram consists of two similar sub-diagrams for non-phosphorylated (upper sub-diagram) and phosphorylated states (lower sub-diagram). C1 and C2 are closed states; O1 and O2 are open states; C1p and C2p are closed phosphorylated states; O1p and O2p are open phosphorylated states. The rate constants from C1 to O1, from O1 to O2, from C2 to O2p, and from O2p to O2p are Ca2+-dependent; and khol and kphos are the phosphorylation and dephosphorylation rates, respectively (see Appendix S1). Panel B: Time course of the relative phosphorylation level of RyRs upon activation of the β1-adrenergic signaling system. Experimental data of Xiao et al. [94] (filled circles) are obtained upon stimulation of rat ventricular myocytes with 1 μM isoproterenol; experimental data of Takasago et al. [95] (filled squares) are obtained from canine ventricular myocytes with endogenous PKA by application of [γ-32P]ATP. Modeling data are obtained by application of 1 μM isoproterenol. Increase in phosphorylation level is determined as a fractional increase related to the maximum increase in phosphorylation of RyRs after activation of the β1-adrenergic signaling system. Panel C: Relative phosphorylation level of RyRs at different concentrations of isoproterenol. Experimental data of Xiao et al. [94] (filled circles) obtained upon stimulation of rat ventricular myocytes for 15 minutes. Simulation data are obtained after 10-minute exposure to different concentrations of isoproterenol. Panel D: Effects of PKA on opening probability of RyRs as function of cytosolic Ca2+ concentration. Experimental data of Xiao et al. [93] are obtained for cardiac RyRs upon activation of (filled circles) and boiled (unfilled circles) PKA at relatively small luminal Ca2+ of 45 nM; experimental data of Xiao et al. [96] (filled squares) for RyRs are obtained from mouse ventricular myocytes. Simulation data for mouse ventricular myocytes in the absence and presence of PKA are obtained at intracellular [Ca2+]i concentration ranging from 0.01 to 10 μM and are shown by dashed and solid lines. Experimental data obtained at small luminal Ca2+ concentration shows larger sensitivity of RyRs to cytosolic Ca2+.

doi:10.1371/journal.pone.0089113.g011

Figure 12B shows the experimental dependence of the relative increase in I K to1 as a function of isoproterenol concentration obtained from guinea pig ventricular myocytes (filled circles [101]). We compared the experimental data to our simulations of a relative increase in the phosphorylation level for phospholamban (solid line, Fig. 12B). In general, simulation data has a dependence on isoproterenol concentration similar to the experimental data, except for a point at 0.01 μM isoproterenol. Such deviation could be due to the species differences.

Finally, our model successfully reproduced the experimental behavior of intracellular [Na+]i concentration in mouse ventricular myocytes measured before and 10 minutes after an application of 1 μM isoproterenol (Fig. 12C, [100]). Both the experimental and simulation data show relatively small, but significant decreases in [Na+]i, after stimulation of the β1-adrenergic signaling system.

Ultra-rapidly activating delayed rectifier K+ current module. The ultra-rapidly activating delayed rectifier K+ current, I Kaur, is the substrate of PKA in the extracaveolae compartment in cardiomyocytes [15,102]. I Kaur is predominantly inhibition by forskolin (1 μM) in human left and right atrial myocytes by about 40–50%. Similar inhibition is obtained in neural cells [110] for A-type K+ current, IA, which is also encoded by Shal-type K+ channels (Kv4.2), after application of 8-br-cAMP (100 μM), or db-cAMP (10 μM). Our simulation data shows about a two-fold decrease in peak I Kaur at saturating concentrations of isoproterenol (Fig. 13E).

Figure 13D shows experimental time courses of I K to1 current inhibition by forskolin (1 μM) or db-cAMP (10 μM) obtained in Schwann cells [111] (filled and unfilled circles, respectively). Our simulation, shown by a solid line for the saturating concentration of isoproterenol (10 μM), gives a reasonable agreement with the experimental data. The saturating concentration of isoproterenol was chosen in the simulation to obtain CAMP concentration in the extracaveolae compartment similar to the experimental values and maximum activation of PKA.

Simulated time courses of I K to1 in control and after application of 10 μM isoproterenol are shown in Fig. 13E by solid and dashed lines, respectively. Calculations demonstrate about a two-fold inhibition of peak current after application of β1-ARs. A similar level of inhibition of I Kaur is obtained by activation of PKA with saturating concentrations of 8-br-cAMP (100 μM) in neural cells [110], and I K to1 after application of saturating concentrations of isoproterenol in human left and right atrial cells [109]. Simulations also demonstrate depolarization shifts in voltage dependences of G/Smax (13 mV) and steady-state inactivation (6 mV) for isoproterenol-stimulated compared to control cells (Fig. 13F), which is similar to the experimental data from [110] obtained for neural cells.

Time-independent K+ current module. While experimental data shows the effects of activation of the β1-adrenergic signaling system on the time-independent current I K1, such effects are clear only at potentials below −80 mV [112,113]. Therefore, we did not include modulation of I K1 by β1-ARs in our model.

Phospholamban module. Phospholamban is the first PKA substrate in the cytosolic compartment, which is included in our model [114]. Its major role is the regulation of SERCA pump activity by changing the affinity of the latter. Activation of the compartment in our model is the rapidly recovering transient outward K+ current, I K to1, I K to1 is found in lipid rafts that lack caveolin-3 pointing to non-caveolae localization [15,69,105]. Heijman et al. [8] also placed I to1, which is encoded by Shal-type K+ channels (Kv4.2/Kv4.3), to the extracaveolae compartment.
Adrenergic Signaling in Mouse Myocytes

Fig. 12. The effects of β1-adrenoceptor stimulation on the Na⁺-K⁺ pump. Panel A: Experimental time course of a relative decrease in the intracellular [Na⁺] concentration (filled circles) obtained by Despa et al. [100] from mouse ventricular myocytes after application of 1 μM isoproterenol and corresponding simulated time course of an increase in relative phosphorylation level of phospholemman obtained using our model (solid line). Panel B: Experimental data on a relative increase in Na⁺ current (filled circles) obtained by Gao et al. [101] from guinea pig ventricular myocytes at different concentrations of isoproterenol. Corresponding simulation data with our model on a simulated (gray bars) data on intracellular [Na⁺] concentration before (control) and after 10-minutes application of 1 μM isoproterenol (iso).

Method of Simulation

The resulting model contains 141 ordinary differential equations solved by a fourth-order Runge-Kutta method, with different time steps. A relatively small time step of 0.000002 ms is used during the 10 milliseconds after the initiation of the stimulus current; the rest of the time, the time step is 0.0001 ms. Such small time steps are mainly determined by the very fast activation time constants of ryanodine receptors [25,122]. For simulation of the cellular behavior without electrical stimulation the time step of 0.0001 ms is used. The resulting model contains 141 ordinary differential equations solved by a fourth-order Runge-Kutta method, with different time steps. A relatively small time step of 0.000002 ms is used during the 10 milliseconds after the initiation of the stimulus current; the rest of the time, the time step is 0.0001 ms. Such small time steps are mainly determined by the very fast activation time constants of ryanodine receptors [25,122]. For simulation of the cellular behavior without electrical stimulation the time step of 0.0001 ms is used. The model is implemented as a program code in FORTRAN 90, which runs on a single processor under SUSE Linux 11 on a Dell Precision Workstation T3500 with six-core Intel Xeon CPU W3670 (3.2 GHz, 12 GB RAM). Simulation of one second of the activity of an electrically stimulated cell runs approximately 3 minutes on this workstation. All model equations, model parameters, and initial conditions are given in Appendix S1. The model is developed for a room temperature of 25°C (T = 298 K). Steady-state initial conditions were obtained by

β₁-adrenergic signaling system leads to an increased phosphorylation of PLB by PKA, resulting in an increase in the SERCA pumping rate of Ca²⁺ from the cytosol to the SR. Dephosphorylation of PLB occurs by protein phosphatase 1 only [59,115].

Figure 14A shows experimental and simulated time courses of PLB phosphorylation (in %) after stimulation of the β₁-adrenergic signaling system. Experimental data were obtained from rat hearts by application of 0.5 μM PKA catalytic subunit (unfilled squares, [116]) or 1 μM isoproterenol (filled circles, [117]). Data of Li et al. [118] obtained from mouse ventricular myocytes with application of 1 μM isoproterenol is shown by unfilled circles. Phosphorylation occurs rapidly, within one to two minutes of exposure to agonists. The time course is reasonably well reproduced by the model (solid line in Fig. 14A).

Relative phosphorylation levels of PLB after stimulation with different concentrations of isoproterenol are shown in Fig. 14B. Experimental data obtained from rat [116,117] and guinea pig [119] hearts and from rat ventricular myocytes [120] consistently show similar half-activation isoproterenol concentration in the range from 0.003 to 0.01 μM. A similar dependence of PLB phosphorylation levels is obtained from the model after 2-minute exposure to different concentrations of isoproterenol (solid line in Fig. 14B).

Troponin I module. Troponin I (inhibitory subunit of troponin complex) is the second substrate that is phosphorylated by PKA in the cytosolic compartment [27]. Phosphorylation of troponin I increases the Ca²⁺ binding affinity [121], thereby decreasing the corresponding dissociation constant. Dephosphorylation of troponin I occurs by protein phosphatase 2A [61,115].

Figure 14C shows experimental and simulated data of the time course of the relative phosphorylation level of troponin I for mouse ventricular myocytes. Experimental data were obtained by Li et al. [118] upon stimulation of cardiac cells with 1 μM isoproterenol. Both experimental and simulated data demonstrate a significant phosphorylation level of TnI without stimulation of the β₁-adrenergic signaling system. Upon application of isoproterenol, both experimental data and simulations show saturating TnI phosphorylation levels within 2 minutes of stimulation (Fig. 14C).

Dependence of the relative phosphorylation level of TnI as a function of isoproterenol concentration is shown in Fig. 14D. Both our simulations and experimental data obtained by Sulakhe and Vo [120] show a significant phosphorylation level of TnI at very low concentrations of isoproterenol. Data also demonstrates that 0.1 μM isoproterenol causes almost complete TnI phosphorylation.

doi:10.1371/journal.pone.0089113.g012

Figure 12. The effects of β₁-adrenoceptor stimulation on the Na⁺-K⁺ pump. Panel A: Experimental time course of a relative decrease in the intracellular [Na⁺] concentration (filled circles) obtained by Despa et al. [100] from mouse ventricular myocytes after application of 1 μM isoproterenol and corresponding simulated time course of an increase in relative phosphorylation level of phospholemman obtained using our model (solid line). Panel B: Experimental data on a relative increase in Na⁺ current (filled circles) obtained by Gao et al. [101] from guinea pig ventricular myocytes at different concentrations of isoproterenol. Corresponding simulation data with our model on a simulated (gray bars) data on intracellular [Na⁺] concentration before (control) and after 10-minutes application of 1 μM isoproterenol (iso).
Figure 13. The effects of β1-adrenoceptor stimulation on \(I_{Kur} \) and \(I_{Kto,f} \). Panel A: Experimental time course of the relative increase in the ultra-rapidly activating delayed-rectifier K\(^{+}\) current \(I_{Kur} \) obtained by Li et al. [107] from human atrial myocytes after application of 1 μM isoproterenol (line with filled circles) and corresponding simulated time course of an increase in \(I_{Kur} \) obtained with our model (solid line). Simulation data is...
running the model equations without electrical stimulations until changes in each variable did not exceed 0.01%. To generate action potentials, a stimulus current, \(I_{\text{stim}} \), was applied \((I_{\text{stim}} = 80 \, \text{pA/\mu F}, \, \tau_{\text{stim}} = 1 \, \text{ms}) \) with the frequencies from 1 to 5 Hz (electrical stimulation). Voltage-clamp protocols for ionic currents are described in corresponding figure legends.

Results

In this paper, our model for action potential and \(\text{Ca}^{2+} \) dynamics in an apical mouse cardiac cell [25,26] was extended to include a \(\beta_1 \)-adrenergic signaling system by using, in considerable part, the methodology from the previously published models [8,10,11,12,13]. Unlike models [10,11,12], our model represents a compartmentalized \(\beta_1 \)-adrenergic signaling system. While the model of Heijman et al. [8] also includes a compartmentalized \(\beta_1 \)-adrenergic signaling system, it is developed for larger species (dog) and is verified with a different set of experimental data. In particular, our model differs from the Heijman et al. model [8] in the following: 1) our model was verified in significant part by the experimental data from mice; 2) the model was developed for a different species (mouse) and includes a significantly different set of ionic currents; 3) the model considers non-zero phosphorylation levels of the protein kinase A substrates before activation of the \(\beta_1 \)-adrenergic signaling system; 4) the model includes additional modulation of adenylyl cyclases by \(\beta_2 \)-subunits of stimulatory G-protein, \(G_s \); 5) the model data is compared in significant part with both absolute and relative magnitudes of the activities of major signaling molecules of the \(\beta_1 \)-adrenergic signaling system; 6) the model includes two subpopulations of the L-type \(\text{Ca}^{2+} \) channels located both in the caveolae and extracaveolae compartments; 7) ryanodine receptors are localized in the extracaveolae compartment. Our model also differs from the recently published Yang and Saucerman model [12] for mouse ventricular myocytes in the following: 1) compartmentalization of the \(\beta_1 \)-adrenergic signaling system; 2) inclusion of different types of adenylyl cyclases (AC4–7) and phosphodiesterases (PDE2–4), their compartmentalization and specific regulation by drugs (e.g., rolipram, Ro 20–1724, cilostamide, milrinone); 3) compartmentalized distribution of protein kinase A targets and the possibility of their separate regulation by drugs; 4) the effects of \(\beta_1 \)-adrenergic signaling system not only on \(\text{Ca}^{2+} \) dynamics, but also on action potential.

cAMP Dynamics During Activation of \(\beta_1 \)-adrenergic Signaling System: the Effects of Phosphodiesterases

First, we investigated the behavior of cAMP and PKA catalytic subunit concentrations in different cellular compartments in response to the activation of the \(\beta_1 \)-adrenergic signaling system with isoproterenol. In non-stimulated cells, cAMP concentrations in caveolae, extracaveolae, and cytosol are equal to 0.2534 \(\mu \text{M} \), 0.5079 \(\mu \text{M} \), and 0.4078 \(\mu \text{M} \), respectively. Such steady state concentrations are determined by the balance between cAMP production by adenylyl cyclases, cAMP degradation by phosphodiesterases, and cAMP fluxes between the compartments. The steady-state concentrations of cAMP were obtained by running the model equations without electrical stimulations until changes in each variable did not exceed 0.01%. The steady-state distribution of cAMP concentrations are qualitatively similar to the values obtained by Iancu et al. [13] and Heijman et al. [8]. Iancu et al. [13] data gives 0.1 \(\mu \text{M} \) and 1 \(\mu \text{M} \) of caveolae and cellular cAMP concentrations; Heijman et al. [8] data shows 0.3471 \(\mu \text{M} \), 9.6236 \(\mu \text{M} \), and 0.47408 \(\mu \text{M} \) of cAMP in the caveolae, extracaveolae, and cytosolic compartments, respectively. All simulated cellular cAMP concentrations are close to the resting cellular cAMP concentrations (~ 0.5–1 \(\mu \text{M} \)) obtained experimentally [52,53].

Figure 15A shows the simulated time courses of cAMP concentrations in different subcellular compartments in response to 1 \(\mu \text{M} \) isoproterenol. All cAMP transients show relatively fast rising (time-to peak is 35–70 s) and initial decaying phases due to the activation of ACs and PDEs (Fig. 15C), and relatively slow decay due to desensitization of \(\beta_1 \)-ARs. The fastest cAMP transient is observed in the caveolae compartment because of the larger relative activities of ACs and PDEs in this compartment (see Appendix S1). In caveolae, cAMP also decays to the smaller quasi-steady-state values during desensitization of \(\beta_1 \)-ARs. In the extracaveolae compartment, cAMP rises and decays somewhat slower than in the caveolae compartment and approaches the largest quasi-steady-state values at later times. cAMP transient in the cytosolic compartment has the largest time-to-peak value and the largest amplitude. It predominantly determines the behavior of cAMP in the cardiac cell (thick solid line). Note that the cellular cAMP concentration transient has a somewhat smaller amplitude due to its normalization to the whole cell volume \(V_{\text{cell}} \).

Figures 15C and 15D demonstrate major factors that affect cAMP transient development. cAMP increases upon relatively fast activation of adenylyl cyclases by the alpha subunit of the stimulatory G protein \(G_{sA} \) in all subcellular compartments (time-to-peak is ~10 s). This process is accompanied by activation of phosphodiesterases, with some delay, due to the rising cAMP concentration and phosphorylation of PDEs by catalytic subunits of PKA. The interaction between ACs and PDEs reaches quasi-steady-state by ~200 s, when their activities become close to each other. The slower part of cAMP transient is determined by the desensitization of \(\beta_1 \)-ARs when the concentration of \(G_{sA} \) decreases due to its smaller production and faster re-association with \(G_{s\beta_1} \) to restore \(G_{s\beta_1} \). In addition to the interaction of ACs and PDEs,
cAMP fluxes between the subcellular compartments contribute to cAMP transients (Fig. 15D). At early times, up to ~30 s, the largest flux is from the caveolae to the cytosolic compartment, which is determined by the largest rising rate of cAMP in caveolae. Then this flux changes direction, and a significant amount of cAMP flows from cytosol to caveolae (dashed line in Fig. 15D). Smaller fluxes, from extracaveolae to caveolae and from cytosol to extracaveolae, are also observed during this stage of activation of β₁-ARs.

In our model, in contrast to cAMP, PKA does not move between the compartments. Its activation is determined by the type of PKA (PKAI or PKAII) and the level of cAMP in each compartment (Fig. 15B). Concentrations of catalytic subunits of PKA decay relatively slowly in extracaveolae and cytosolic compartments (dashed and dotted lines in Fig. 15B, respectively) compared to those in caveolae compartment (thin solid line in Fig. 15B), despite the relatively fast decay of cAMP concentrations in both caveolae and cytosol (Fig. 15A). Such relatively fast return of cAMP and PKA concentrations to their resting values in caveolae points to an important role of this compartment in the fast cAMP-mediated signal transduction within the β₁-adrenergic signaling system.

In addition to control conditions, we also simulated the effects of PDE3 and PDE4 inhibition on cAMP dynamics (Fig. 16).
is no detailed experimental data on cAMP dynamics during PDE inhibition in mouse ventricular myocytes, we compared qualitatively the simulated cellular response to the data obtained for rats [123]. The data for rats shows that the selective inhibition of PDE3 by cilostamide has significantly smaller effects on cAMP transient than the selective inhibition of PDE4 by Ro 20–1724. We simulated two different methods of cAMP transient production during inhibition of PDE3 or PDE4: with continuous and pulsed application of 0.1 mM isoproterenol. Figure 16A shows that continuous application of isoproterenol from \(t = 0 \) s with simultaneous selective inhibition of PDE3 (90% inhibition) leads to an increase in peak cAMP transient by about 30%. In contrast, simultaneous application of isoproterenol and selective inhibition of PDE4 (90% inhibition) increases peak cAMP value by about \(\sim 150\% \). This result points to the primary role of PDE4 in cAMP degradation compared to PDE3. Similar results were obtained experimentally in rats [123,124]. It needs to be determined experimentally whether such predicted effect will be observed in mouse ventricular myocytes as well.

In another set of simulations, the cells were first affected by the selective inhibitor of PDE3 (or PDE4), and then a pulse of 0.1 mM isoproterenol was applied at \(t = 200 \) s for 30 s (thick solid line in Fig. 16B). In the time interval from 0 to 200 s, the selective inhibition of PDE3 or PDE4 (both by 90%) increases steady-state cellular cAMP concentrations by \(\sim 35\% \) and \(\sim 130\% \) (Fig. 16B). Pulsed application of isoproterenol produces relatively short cAMP transients, which decay to the pre-pulse quasi-steady-state levels. When PDE3 is selectively inhibited, cAMP transient amplitude is equal to 0.6754 mM, which is \(\sim 17\% \) larger than the cAMP transient in control (0.5763 mM). Selective inhibition of PDE4 results in the larger cAMP transient of 0.9780 mM, or \(\sim 69.7\% \) larger than in control. Experimental data with pulsed application of isoproterenol and selective inhibition of PDE3 and PDE4 obtained from rat ventricular myocytes show qualitatively similar

Figure 15. The effects of \(\beta_1 \)-adrenoceptor stimulation on the dynamics of cAMP and PKA. Panel A: Simulated time courses of cAMP concentrations in caveolae (thin solid line), extracaveolae (dashed line), and cytosolic compartments (dotted line), and in the whole cell volume (bold solid line) after application of 1 mM isoproterenol. Panel B: Simulated time courses of PKA catalytic subunit concentrations in caveolae (thin solid line), extracaveolae (dashed line), and cytosolic compartments (dotted line), and in the whole cell volume (bold solid line) after application of 1 mM isoproterenol. Panel C: Simulated time courses of cAMP production rate by adenylyl cyclases (solid line) and cAMP degradation rate by phosphodiesterases (dashed line) after application of 1 mM isoproterenol. Panel D: Simulated time course of cAMP fluxes between caveolae and extracaveolae (solid line), caveolae and cytosol (dashed line), and extracaveolae and cytosol (dotted line) after application of 1 mM isoproterenol. Fluxes are normalized to the cell volume \(V_{\text{cell}} \).

doi:10.1371/journal.pone.0089113.g015
1 Hz stimulation. Simulated data shows that isoproterenol
1-adrenergic receptors. Panel A: Simulated time courses of cellular cAMP concentrations for control conditions (solid line), upon inhibition of PDE3 (dashed line), and upon inhibition of PDE4 (dotted line) after sustained application of 0.1 μM isoproterenol at time moment t = 0 s. Activities of PDE3 or PDE4 are inhibited by 90% to simulate the effects of corresponding selective inhibitors, clofamamide or milrinone for PDE3, or rolipram or Ro 20–1724 for PDE4. Panel B: Simulated time courses of cellular cAMP concentrations for control conditions (solid line), upon inhibition of PDE3 (dashed line), and upon inhibition of PDE4 (dotted line) after pulsed application of 0.1 μM isoproterenol at time moment t = 200 s for 30 s (thick solid line). The degrees of inhibition of PDE3 and PDE4 are the same as in Panel A.

doi:10.1371/journal.pone.0089113.g016

behavior [123]. Further experiments are necessary to determine whether similar effects can be observed in mice.

The Effects of Activation of the β1-adrenergic Signaling System on Mouse Action Potential

Experimental data obtained from mouse ventricular myocytes shows that the activation of the β1-adrenergic signaling system affects action potential shape and duration [75,125,126]. To simulate these effects, we stimulated the model cell with current pulses (Istim = 80 pA/pF, τstim = 1.0 ms) at frequencies 1 and 5 Hz for 300 s without and with application of 1 μM isoproterenol. Figure 17A shows corresponding action potentials obtained by 1 Hz stimulation. Simulated data shows that isoproterenol

prolongs mouse action potential at different degrees of repolarization. Table 1 shows the comparison of the simulated prolongations of the action potentials with the experimental data. For example, APD50 and APD90 are prolonged by 21.67% and 14.90%, respectively. The simulated data for APD50 prolongation is close to the corresponding experimental data, 13.5 ± 4% [126] and 18% [125] prolongation, but somewhat smaller than 46% prolongation obtained by Wang et al. [75]. In addition, the simulated data for APD90 prolongation is within the experimental data variation (5 ± 7% [126], 9% [125], and 51% [75]).

It is remarkable that such relatively small AP prolongation due to activation of β1-ARs is accompanied by significant changes in underlying ionic currents (Fig. 17). Simulations elucidate the mechanism of this prolongation. The four major currents are responsible for the changes in AP shape at an early stage of repolarization. The fast Na+ current, INa, changes only slightly, which leads to a small increase in AP amplitude (from 114.3 mV in control to 117.8 mV after Iso). The L-type Ca2+ current, ICaL, increases almost twice upon stimulation of β1-ARs, and promotes AP prolongation. There is also a decrease in the amplitude of the rapidly recovering transient outward K+ current, IKr, which contributes to AP prolongation. An increase in the amplitude of the ultrarapidly activating K+ current, IK1, is the major opposing effect to AP prolongation, resulting in a relatively small total effect. At 90% of repolarization, four other, relatively small currents contribute to repolarization: the Na+/Ca2+ exchanger current, INaCa, the time-independent K+ current, IK1o, and the Na+/K+ pump, INaK, and the Na+ background current, INa.b (Fig. 17, D and E).

Significant increase in the magnitude of INaCa current upon application of isoproterenol (Fig. 17E) is one of the additional factors that cause action potential prolongation at 90% repolarization.

Simulation data obtained at stimulation frequency 5 Hz (Fig. 17, F–J) shows very similar behavior to the data for 1 Hz. The only

Table 1. Simulated and experimental prolongations (in %) of the action potentials in mouse ventricular myocytes at different repolarizations and stimulation frequencies (1 μM Iso).

<table>
<thead>
<tr>
<th></th>
<th>APD50 ms</th>
<th>APD90 ms</th>
<th>APD75 ms</th>
<th>APD25 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu et al. [126] *</td>
<td>13.5 ± 4</td>
<td>5 ± 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tong et al. [125] **</td>
<td>18</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tong et al. [125] ***</td>
<td>38</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al. [75] ****</td>
<td>48</td>
<td>51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Experimental data are obtained at 0.5 Hz stimulation and 2 μM isoproterenol.
** Experimental data are obtained at 2 Hz stimulation.
*** Experimental data are obtained at 4 Hz stimulation.
**** Experimental data are obtained at 1 Hz stimulation.

doi:10.1371/journal.pone.0089113.t001
significantly changes in the peak amplitudes of the fast Na$^+$ current, I_{Na}, which are decreased during stimulation with 5 Hz. A smaller decrease is observed for K$^+$ currents I_{KNa} and I_{Kw} at 5-Hz stimulations. Simulation of application of 1 μM isoproterenol at 5 Hz stimulation prolongs APD$_{90}$ and APD$_{50}$ by 27.27% and 10.37%, respectively (Table 1). These prolongations are compared to the experimental data of Tong et al. [125] obtained at 4 Hz stimulation (38% and 28% prolongation for APD$_{50}$ and APD$_{90}$, respectively). Simulation data shows a correct trend of APD$_{50}$ prolongation, which increases with stimulation frequency. However, simulated prolongation of APD$_{90}$ at 5 Hz-stimulation shows somewhat smaller magnitude compared to 4 Hz-data of Tong et al. [125].

We have also simulated the effects of isoproterenol on action potential durations (APDs) at the frequencies ranged from 1 to 5 Hz. Simulation data shows relatively small increase in APDs at different levels of repolarization with stimulation frequency. For example, without isoproterenol, APD$_{90}$ changes from 3.0 to 3.3 ms and APD$_{50}$ changes from 25.5 to 27.0 ms when stimulation frequency increases from 1 to 5 Hz. Upon exposure to isoproterenol, APD$_{90}$ increases from 3.65 to 4.2 ms and APD$_{50}$ ranges from 29.3 to 30.7 ms during the same increase in stimulation frequency. Prolongation of cardiac action potential durations upon application of isoproterenol is consistently observed experimentally in mouse ventricular myocytes [75,125,126] (Table 1).

The Effects of Activation of the β1-adrenergic Signaling System on Ca$^{2+}$ Dynamics

Experimental data obtained with micromolar concentrations of isoproterenol demonstrates significant (up to 5-fold) increase in intracellular [Ca$^{2+}$], transients obtained from mouse ventricular myocytes (Fig. 18, [75,127,128,129]). Our simulations are able to reproduce this behavior. Figure 18, A and B, shows simulated [Ca$^{2+}$], transients, obtained without and with a 1 μM isoproterenol at stimulation frequencies 1 and 5 Hz. Stimulation of the β1-adrenergic signaling system increases the simulated amplitudes of [Ca$^{2+}$], at 1 Hz-stimulation from 0.44 μM to 1.92 μM (Fig. 18A), or by 4.33 fold. At larger stimulation frequency 5 Hz, [Ca$^{2+}$]i increases from 0.66 μM to 1.85 μM (Fig. 18B), or by 2.79 fold. These values are in good agreement with the experimental data [75,127,128,129], which ranges from 2.3 to 5.2-folds increase. Frequency dependence of the diastolic and systolic [Ca$^{2+}$], (Fig. 18C) demonstrates an increase of their magnitudes, with the exclusion of peak [Ca$^{2+}$], at 1 μM isoproterenol and stimulation frequencies 4 and 5 Hz. It is remarkable that the model reproduces experimentally found feature such as independence of diastolic [Ca$^{2+}$], from the β1-adrenergic stimulation [128,130].

Our model also provides appropriate time constants for the decay of intracellular [Ca$^{2+}$], and corresponding acceleration of the decay upon application of isoproterenol. Simulated and experimental frequency dependences of the decay of intracellular [Ca$^{2+}$], without and with 1 μM isoproterenol are shown in Fig. 18D. The simulated time constants for the decay decrease with the stimulation frequency without and with isoproterenol and reasonably well approximate experimental data [128,131]. Note, however, that the absolute values of [Ca$^{2+}$], relaxation constants obtained by Wang et al. [75] without and with isoproterenol are significantly longer, 267 and 147 ms, respectively, but their ratio (~1.8) is very close to the corresponding simulated value.

Our model allows for evaluation of various Ca$^{2+}$ fluxes and their modifications by isoproterenol. Figure 19 shows simulated Ca$^{2+}$ fluxes obtained at 1 and 5 Hz stimulations without and with 1 μM isoproterenol. Simulations show that the activation of the β1-adrenergic signaling system leads to a significant increase in Ca$^{2+}$ influx through the L-type Ca$^{2+}$ channels during action potential from 1.6 μM (4.5% of released Ca$^{2+}$ from the SR) to 3.3 μM (5.3%) at 1 Hz and from 1.8 μM (5.5%) to 3.5 μM (7.6%) at 5 Hz during cardiac cycles. Increase in Ca$^{2+}$ influx results in an increase in the SR Ca$^{2+}$ load, from 919 μM to 1860 μM at 1 Hz (Fig. 19E, an increase which is comparable to the experimental findings [128,129,132]), resulting in a growth of Ca$^{2+}$-induced Ca$^{2+}$ release from 36 μM to 161 μM. Smaller increase in the SR Ca$^{2+}$ load is obtained at 5 Hz, from 1367 μM to 1602 μM, which results in an increase of Ca$^{2+}$ release from 32 μM to 46 μM. An increase in intracellular [Ca$^{2+}$], transients after application of isoproterenol also increases Ca$^{2+}$ extrusion from the cytosol by the Na$^+$/Ca$^{2+}$ exchanger from 3.1 μM (8.6%) to 4.6 μM (7.6%) at 1 Hz and from 1.9 μM (6.0%) to 3.6 μM (7.8%) at 5 Hz; however, this increase does not completely compensate for the Ca$^{2+}$ entry into the cell, which ultimately leads to an increase in the SR Ca$^{2+}$ load. Only 0.18 μM and 0.28 μM (1 Hz stimulation) and 0.16 μM and 0.22 μM (5 Hz stimulation) of Ca$^{2+}$ are extruded from the cell by a slow mechanism through the sarcolemmal Ca$^{2+}$ pump for control conditions and after application of isoproterenol, respectively, which is about 0.5% of the released Ca$^{2+}$ in all cases. Our model also includes background Ca$^{2+}$ influx of ~1.7 μM (1 Hz) and ~0.3 μM (5 Hz) due to a very large Ca$^{2+}$ gradient across the membrane, which does not change upon stimulation of β1-ARs.

Figure 20 shows the time behavior of the peak values of intracellular [Ca$^{2+}$], transients and intracellular [Na$^+$], concentration for control conditions and after application of 1 μM isoproterenol upon stimulation with frequency 1 Hz. In control, [Ca$^{2+}$], transients approach quasi-steady-state values after a short-time initial decay (negative staircise effect). After application of isoproterenol, [Ca$^{2+}$], transients relatively rapidly increase in amplitude during the first ~300 seconds, and then they slowly decay. Such behavior of [Ca$^{2+}$], transients is similar to the experimental data obtained by Despa et al. [127]. Initial increase in [Ca$^{2+}$], transients is due to the rapid activation of β1-adrenoceptors and cAMP accumulation; relatively slow decay of peak [Ca$^{2+}$], is due to β1-adrenoceptors desensitization. In addition, Despa et al. [127] have shown that the stimulation of β1-ARs decreases intracellular [Na$^+$], concentration due to an increased function of the Na$^+$-K$^+$ pump. Our simulation data reproduced this behavior. In control, stimulation of the model cell leads to a slight increase in [Na$^+$], to saturating values (solid line in Fig. 20B). However, the behavior of [Na$^+$], changes after application of isoproterenol (dashed line in Fig. 20B); after a small initial increase until peak value, [Na$^+$], decreases subsequently in time until quasi-steady-state level. Simulated [Na$^+$], concentration begins to decay at approximately the same time as [Ca$^{2+}$], achieves

Figure 17. Simulated action potentials and underlying ionic currents of the isolated ventricular cell model. Simulated action potentials and underlying ionic currents are shown for control of 1 μM isoproterenol at two pacing frequencies 1 Hz (Panels A-E) and 5 Hz (Panels F-J) (gNa = 80 pA/μF; τNa = 1.0 ms). Panels A and F: Simulated action potentials for control conditions (solid line) and after isoproterenol application (dashed line). Panels B, D, G, and I: Currents underlying the AP for control condition. Panel C, E, H, and J: Currents underlying the AP after isoproterenol application. The scales for the relatively large fast Na$^+$ current, I_{Na}, are given on the right axis in Panels B, C, G, and H. APs and ionic currents are shown after 300 s stimulation. In Panels A, C, E, F, H, and J 1 μM isoproterenol is applied at time $t=0$ s.
Figure 18. Simulated and experimental \([\text{Ca}^{2+}]_i\) transients and their characteristics in an isolated ventricular cell for control conditions and after application of isoproterenol. Panel A: Simulated \([\text{Ca}^{2+}]_i\), transients for control conditions (solid line) and after 1 \(\mu\text{M}\) isoproterenol application (dashed line) obtained with 1 Hz-stimulation. Panel B: Simulated \([\text{Ca}^{2+}]_i\), transients for control conditions (solid line) and after 1 \(\mu\text{M}\) isoproterenol application (dashed line) obtained with 5 Hz-stimulation. Panel C: Simulated diastolic (filled symbols) and systolic (unfilled symbols) \([\text{Ca}^{2+}]_i\), magnitudes for control conditions (circles) and after 1 \(\mu\text{M}\) isoproterenol application (triangles) as functions of stimulation frequency. Panel D: Decay time constants for intracellular \([\text{Ca}^{2+}]_i\), transients for control conditions and after 1 \(\mu\text{M}\) isoproterenol application as functions of stimulation frequency. Simulated data are shown by solid (control) and dashed (1 \(\mu\text{M}\) isoproterenol) lines. The lines with symbols show experimental data from Benkunsky et al. [131]; experimental data from Knollmann et al. [128] are shown by squares. Panel E: Increase in \([\text{Ca}^{2+}]_i\), transient amplitudes after application of isoproterenol (folds). Model data and data of Wang et al. [75] and Liu et al. [129] are obtained at 1 Hz and 1 \(\mu\text{M}\) isoproterenol; data of Despa et al. [127] are obtained at 2 Hz and 1 \(\mu\text{M}\) isoproterenol; data of Knollmann et al. [128] are obtained at 1 Hz and 0.5 \(\mu\text{M}\) isoproterenol. All simulation data in this figure are obtained after 300-s stimulations and exposure to 1 \(\mu\text{M}\) isoproterenol.

doi:10.1371/journal.pone.0089113.g018
its maximum value. Experimental data shows a plateau in concentration of $[\text{Na}^+]$ for a short time after application of isoproterenol, which is replaced by a decay after $[\text{Ca}^{2+}]$ achieves the maximum value $[127]$. Finally, experimental data demonstrates the absence of the negative staircase effect in $[\text{Ca}^{2+}]$ transients which are elicited by stimulation of a quiescent cell after application of isoproterenol $[27]$. The experimental data are obtained for rat ventricular myocytes, whose Ca^{2+} handling system is similar to that for mice. Our model for mouse ventricular myocytes reproduced this behavior. Figure 21A shows $[\text{Ca}^{2+}]$, transients upon stimulation of the quiescent cell with the frequency of 1 Hz in the control cell. The $[\text{Ca}^{2+}]$, decrease in time, clearly shows a negative staircase effect. In another simulation (Fig. 21B), 1 μM isoproterenol is applied to the quiescent cell for 600 seconds, and then the cell is electrically stimulated with the frequency of 1 Hz. The simulation data does not show a decrease in $[\text{Ca}^{2+}]$, transient amplitudes.

Figure 19. Ca^{2+} fluxes and the SR Ca^{2+} load. Simulated major integral Ca^{2+} fluxes during one cardiac cycle in the isolated ventricular cell model for control conditions (Panels A and C) and after application of 1 μM isoproterenol (Panels B and D). Pacing frequencies are 1 Hz (Panels A and B) and 5 Hz (Panels C and D). Major integral Ca^{2+} fluxes are shown after 300 s of stimulation. In Panels B and D 1 μM isoproterenol is applied at time $t=0$ s. Here, J_{CaL} is the Ca^{2+} entering the cell through L-type Ca^{2+} channels; $J_{\text{up}} - J_{\text{leak}}$ is the uptake Ca^{2+} from the cytosol to the network SR with subtracted Ca^{2+} leak from the SR to the cytosol; J_{NaCa} is the Ca^{2+} outflux from the cytosol through the $\text{Na}^+/\text{Ca}^{2+}$ exchanger; and J_{pCa} is the Ca^{2+} outflux through the sarcolemmal Ca^{2+} pump. Panel E: Increase in the SR Ca^{2+} load after 300-s application of isoproterenol. Model data are shown for stimulation frequencies 1, 2, 3, 4, and 5 Hz; experimental data of Liu et al. [129] and Fernandez-Velasco et al. [132] are obtained at 1 μM isoproterenol; data of Knollmann et al. [128] are obtained at 0.5 μM isoproterenol.

doi:10.1371/journal.pone.0089113.g019

Adrenergic Signaling in Mouse Myocytes
thereby confirming the absence of a negative staircase effect after stimulation of the β₁-adrenergic signaling system.

The mechanism of two different types of behavior is explained by the analysis of the input and output Ca²⁺ fluxes without and with application of isoproterenol. Our simulations of the case without isoproterenol show that the stimulation of the quiescent myocyte increases total intracellular Ca²⁺ loss and decreases the SR Ca²⁺ load, resulting in continuous decrease in [Ca²⁺]i transient (Fig. 21A). If the simulated cell is first pretreated with isoproterenol in the quiescent state for 600 seconds and then the electrical stimulation is applied, the Ca²⁺ fluxes inside and outside the cell remain balanced due to the predominant increase in the L-type Ca²⁺ current. The result is that the SR Ca²⁺ load is not decreased, resulting in the absence of negative staircase effect.

The Effects of Activation of the β₁-adrenergic Signaling System on Na⁺ Fluxes

Experimental data shows the effects of the β₁-adrenergic signaling system on Na⁺ dynamics in ventricular myocytes [100,127]. In particular, in mouse ventricular myocytes, [Na⁺]i decreases upon stimulation of β₁-adrenergic receptors. Such behavior was reproduced by our model as well (Fig. 20B). In addition, our model is able to predict major Na⁺ fluxes into and out of the mouse ventricular myocytes. Simulated Na⁺ fluxes for control conditions and after application of 1 μM isoproterenol for stimulation frequencies of 1 and 5 Hz (Istim = 80 pA/pF, tstim = 1 ms) are shown in Fig. 22. Na⁺ enters the cell through the fast Na⁺ channels, Na⁺/Ca²⁺ exchanger, and background mechanisms [large Na⁺ gradient and other exchangers and co-transporters [133]], and is pumped out of the cell by the Na⁺-K⁺ pump. Without isoproterenol and at 1 Hz stimulation, 3.8 μM of Na⁺ enter the cell during action potential through the fast Na⁺ channels (6.5% of the total Na⁺ influx), 9.3 μM of Na⁺ through the Na⁺/Ca²⁺ exchanger (16%), and 45.5 μM of Na⁺ through the background mechanism (77.5%), giving total Na⁺ influx of 58.6 μM. After application of 1 μM isoproterenol and 1 Hz stimulation, the total Na⁺ influx into the cell increases to 64.0 μM, resulting in proportional changes of Na⁺ influx through the fast Na⁺ channels (4.2 μM, or 6.5%), increased influx through the Na⁺/Ca²⁺ exchanger (13.9 μM, or 22%), and unchanged Na⁺ influx through the background mechanism (45.9 μM, or 71.5%). At the larger stimulation frequency (5 Hz), the contribution of the different Na⁺ entry mechanisms changes. Without isoproterenol, 3.6 μM of Na⁺ enter the cell during action potential through the fast Na⁺ channels (20% of the total Na⁺ influx), 5.8 μM of Na⁺ through the Na⁺/Ca²⁺ exchanger (32%), and 8.9 μM of Na⁺ through the background mechanism (48%), yielding total Na⁺

Figure 20. Dynamics of [Ca²⁺]i transients and [Na⁺]i concentrations upon stimulation of β₁-adrenoceptors. Panel A: Simulated peak values of [Ca²⁺]i transient as function of time for control conditions (solid line) and after 1 μM isoproterenol application at t = 0 s (dashed line). Panel B: Simulated intracellular [Na⁺]i concentrations as function of time for control conditions (solid line) and after 1 μM isoproterenol application at t = 0 s (dashed line). In both panels, stimulation frequency is 1 Hz.

doi:10.1371/journal.pone.0089113.g020

Figure 21. The effects of isoproterenol on negative staircase of [Ca²⁺]i transients. Panel A: Simulated [Ca²⁺]i transients as function of time for control conditions show clear negative staircase effect. Panel B: Simulated [Ca²⁺]i transients as function of time after 1 μM isoproterenol application at t = 0 s does not show negative staircase effect. In both panels, stimulation frequency is 1 Hz.

doi:10.1371/journal.pone.0089113.g021
influx of 18.3 μM. Application of 1 μM isoproterenol increases the total Na\(^+\) influx into the cell to 24.4 μM, resulting in an increase of Na\(^+\) influx through the fast Na\(^+\) channels (3.9 μM, or 17%) and the Na\(^+\)/Ca\(^{2+}\) exchanger (10.7 μM, or 46%), and unchanged Na\(^+\) influx through the background mechanism (8.9 μM, or 37%).

Thus, our simulations allow for the estimation of Na\(^+\) fluxes and dynamics, and their modifications by the β\(_1\)-adrenergic signaling system. The model data shows an increased fraction of voltage-dependent Na\(^+\) entry into the cell at higher stimulation frequencies and the shift of the balance of the Na\(^+\) fluxes upon application of isoproterenol towards outside the cell due to an increased function of the Na\(^+\)-K\(^+\) pump.

The Effects of the Block of Different Populations of I\(_{\text{Cal}}\) on the Action Potential and [Ca\(^{2+}\)]\(_i\)

Experimental data shows that two different populations of the L-type Ca\(^{2+}\) channels, in caveolin-3-rich and caveolin-3-free membrane fractions, affects differently [Ca\(^{2+}\)], transients and cellular contraction [70]. Such investigations were performed by a specific block of the caveola-linked L-type Ca\(^{2+}\) channels. While the experiments show a 10% decrease in the mean values of the peak of [Ca\(^{2+}\)]\(_i\) transients in the myocytes with blocked caveola-located L-type Ca\(^{2+}\) channels compared to control, such decrease did not reach statistical significance. Similar small, but not significant, decrease was also observed in myocyte contraction.

We used the model to investigate the effects of the L-type Ca\(^{2+}\) channel block in different cellular compartments on the action potential and [Ca\(^{2+}\)]\(_i\), transients in control and after application of 1 μM isoproterenol (Fig. 23). The model cells are electrically stimulated at the frequency 1 Hz. In control, we observed a little change in action potential shape when the caveolae-linked I\(_{\text{Cal,cav}}\) (I\(_{\text{Cal,cav}}\)) is blocked (APD\(_{50}\) decreased by only 2%), whereas a much larger change in the AP is observed during block of I\(_{\text{Cal}}\), in the extracaveola compartment (I\(_{\text{Cal,ecav}}\)) (APD\(_{50}\) decreased by 14%) (Fig. 23, A). The magnitude of the total I\(_{\text{Cal}}\) changed by ~20% during the block of I\(_{\text{Cal,cav}}\), while the I\(_{\text{Cal}}\) is almost abolished by the block of I\(_{\text{Cal,ecav}}\) (Fig. 23, B). The I\(_{\text{Cal,ecav}}\) block relatively slightly [by 25%] decreases [Ca\(^{2+}\)]\(_i\) transients, similar to the experimental finding by [70], while at the I\(_{\text{Cal,cav}}\) block such transient is not present (Fig. 23, C).

When the model cell is stimulated by isoproterenol, the specific block of I\(_{\text{Cal,cav}}\) only slightly decreased the total cellular I\(_{\text{Cal}}\), (Fig. 23, E), resulting in more pronounced shortening of APD\(_{50}\) (by 8%, Fig. 23, D) compared to control. Even larger AP shortening is obtained with the specific block of I\(_{\text{Cal,ecav}}\) (by 28%). More significant effect of I\(_{\text{Cal,ecav}}\) block on [Ca\(^{2+}\)]\(_i\) transients is predicted by simulations with isoproterenol than for control conditions (a decrease by 28%), and [Ca\(^{2+}\)]\(_i\) transients is almost abolished with the I\(_{\text{Cal,ecav}}\) block (Fig. 23, F). Further experiments on the effects of different populations of the L-type Ca\(^{2+}\) channels on the action potential and [Ca\(^{2+}\)]\(_i\) transients are necessary to verify model predictions.

Discussion

In this paper, a new compartmentalized model for the β\(_1\)-adrenergic signaling system in mouse ventricular myocytes is

Figure 22. The effects of isoproterenol on integral Na\(^+\) fluxes. Simulated major integral Na\(^+\) fluxes during one cardiac cycle in the isolated ventricular cell model are shown for control conditions (Panels A and C) and after application of 1 μM isoproterenol (Panels B and D). Pacing frequencies are 1 Hz (Panels A and B) and 5 Hz (Panels C and D). Major integral Na\(^+\) fluxes are shown after 300 s of stimulation. In Panels B and D 1 μM isoproterenol is applied at time \(t = 0\) s. Here, \(J_{\text{Nav}}\) is the Na\(^+\) entering the caveolae compartment through the fast Na\(^+\) channels; \(J_{\text{Nab}}\) is the background Na\(^+\) influx; \(J_{\text{NaCa}}\) is the Na\(^+\) influx to the cytosol through the Na\(^+\)/Ca\(^{2+}\) exchanger; and \(J_{\text{NaK}}\) is the Na\(^+\) outflux through the Na\(^+\)-K\(^+\) pump.

doi:10.1371/journal.pone.0089113.g022

Adrenergic Signaling in Mouse Myocytes

PLOS ONE | www.plosone.org 28 February 2014 | Volume 9 | Issue 2 | e89113
developed. This model is based on our previously published model for an apical cardiac cell [25,26], which includes a comprehensive description of action potential, ionic currents, and Ca^{2+} dynamics. The new model includes biochemical and electrophysiological parts of the β1-adrenergic signaling pathway, which are extensively verified by the existing experimental data. The model successfully reproduces cAMP dynamics, activation of adenylyl cyclases and phosphodiesterases, protein kinase A and its targets, voltage-clamp protocols for major repolarization currents, action potential modification, and changes in the Ca^{2+} handling mechanism upon stimulation of the β1-adrenergic signaling system. The model allows for elucidation of the mechanisms of action potential

![Graphs of action potentials and [Ca^{2+}]_i transients](image_url)

Figure 23. The effects of two subpopulations of the L-type Ca^{2+} current block on the action potentials and [Ca^{2+}]_i transients. Simulated effects of two subpopulations of the L-type Ca^{2+} current block on the action potentials and [Ca^{2+}]_i transients in the isolated ventricular cell model are shown for control conditions and after application of 1 μM isoproterenol at pacing frequency 1 Hz (I_{stim} = 80 pA/pF, t_{stim} = 1.0 ms). **Panels A–C:** Control conditions; **Panels D–F:** Isoproterenol is applied. **Panels A and D:** Simulated action potentials for control conditions (solid black line), after I_{Ca,L,ecav} block (green line), and after I_{Ca,L,cav} block (red line). **Panels B and E:** Simulated I_{Ca,L} currents. **Panel C and F:** Simulated [Ca^{2+}]_i transients. APs and ionic currents are shown after 300 s stimulation. 1 μM isoproterenol is applied at time t = 0 s.

doi:10.1371/journal.pone.0089113.g023
Adrenergic Signaling in Mouse Myocytes

Compartmentalization of the β_1-adrenergic Signaling System

The β_1-adrenergic signaling system plays a significant role in the function of the heart. There are two types of β-adrenergic receptors in cardiomyocytes (β_1- and β_2-adrenergic receptors), which are different in their cellular localization and function. Experimental data from rat ventricular myocytes by Rybin et al. [20] shows that β_1-adrenergic receptors are distributed between caveolae, non-caveolae membrane fractions, and internal membranes, with the majority of the β_1-adrenergic receptors being found outside of the caveolae compartment. In contrast, β_2-adrenergic receptors (β_2-ARs) are localized in the caveolae compartment [20]. Similar data were obtained for mouse ventricular myocytes [19]. According to the experimental finding, our model includes only 1% of β_1-adrenergic receptors in the caveolae compartment, with the majority of them distributed between the extracaveolae and cytosolic compartments. Such localization suggests different functional consequences: selective activation of β_1-adrenergic receptors with isoproterenol in mouse ventricular myocytes leads to a significant increase in $[Ca^{2+}]_i$, transient and myocyte contraction, while selective activation of β_2-adrenergic receptors with zinterol does not have any effect on myocyte contractility [134]. Activation of β_1-adrenergic receptors also results in phosphorylation of major cytosolic proteins, such as phospholamban and troponin I, while stimulation of β_2-adrenergic receptors does not produce this effect [135].

In addition to differential localization of β_1- and β_2-adrenergic receptors, experimental data also demonstrates differential localization of signaling proteins involved in the β_1-adrenergic signaling pathway, suggesting that even activation of one signaling system is a complex process, which proceeds differently in separate compartments. It has been found that adenylyl cyclases of type V/VI are predominantly localized in caveolae, while types IV and VII are located in non-caveolae membrane fractions and cytosol [28,35,36]. There is also differential distribution of three major types of phosphodiesterases in subcellular compartments (PDE2, PDE3, and PDE4 [48]), which also causes different effects on cAMP degradation [123]. Our model successfully reproduces the activities of ACs and PDEs in different compartments, and the differential effects of PDE3 and PDE4 inhibition in production of cAMP transients. For example, steady-state cAMP concentration is smaller and cAMP transient is less prolonged in the caveolae compartment than in the extracaveolae and cytosol (Fig. 15), suggesting larger activity of PDEs in the caveolae.

Finally, the major protein kinase A phosphorylation targets are also localized in different subcellular compartments. Two of them are found predominantly in the caveolae compartment (the fast Na$^+$ current and the phospholemman, which regulates the Na$^+$-K$^+$ pump), five others ($I_{Ca,L}$, $I_{K_{ur}}$, $I_{K_{ur}}$, $I_{K_{ur}}$, and ryanodine receptors) are predominantly expressed in non-caveolae membrane domains, and phospholamban and troponin I are located in the cytosol (see Methods for details). It is remarkable that one of the PKA targets, the L-type Ca$^{2+}$ channel, is expressed in both the caveolae and extracaveolae compartments, with different physiological role in each domain. In addition to the different distribution of two major protein kinase A isoforms (PKA1 and PKAII), there is also a different localization of the major dephosphorylation proteins (protein phosphatase 1 and protein phosphatase 2A). Both PPI and PP2A are found in the caveolae and cytosolic compartments, however, only PP1 plays an important functional role in the extracaveolae. Such distribution of the targets results in their different phosphorylation kinetics and magnitude, producing a very complex interaction relationship in the effects on action potential and $[Ca^{2+}]_i$ transients.

Our model of the β_1-adrenergic signaling system includes differential subcellular localization of both signaling and target proteins, and is able to reproduce both phosphorylation kinetics and concentration-dependence of protein phosphorylation by isoproterenol (see Methods). Several non-compartmentalized models were developed for β_1-adrenergic signaling system in different species, including mice [9,10,11,12]. The models were extensively verified by the available experimental data on the effects of activation of β_1-adrenergic receptors on electrical activity and ionic homeostasis. However, as the experimental technique is improving and the new data on subcellular organization of signaling systems is accumulating, more comprehensive models are required for more precise description of the cellular functions. Such important findings include differential localization of the isoforms of the major signaling proteins in the β_1-adrenergic signaling system: adenylyl cyclases, phosphodiesterases, and protein kinase A [10,36,46]. Discovery of the differential localization of the targets of PKA, such as the ionic currents and contractile proteins, requires more demands on the models of cardiac cells to include multiple subcellular compartments. One of the recent experimental findings of the two populations of the L-type Ca$^{2+}$ channels, the major players in cardiac excitation-contraction coupling, and their differential physiological role in cellular function highlights the needs in compartmentalized models of cardiac myocytes [21,22]. One such model was developed recently for canine ventricular myocytes and includes three signaling systems, β_1- and β_2-adrenergic, and CaMKII-mediated signaling systems [8]. The model described well extensive experimental data and the effects of different signaling systems on the cardiac action potential and [Ca$^{2+}$], transients. Our model of the β_1-adrenergic signaling system consists of some elements of the model of Heijman et al. [8], but with significant differences, as outlined above. In particular, the presented model includes different localization of ryanodine receptors and describes two populations of the L-type Ca$^{2+}$ channels based on the most recent experimental data [21,22]. While the major role of compartmentalization of the components in the β_1-adrenergic signaling system is clear — separation of the effects of different signaling proteins — the particular role of the signaling molecules in the mechanisms of regulation of the target proteins still needs to be determined.

The Effects of the β_1-adrenergic Signaling System on Action Potential

Experimental data shows that the activation of the β_1-adrenergic signaling system moderately prolongs action potentials duration in mouse ventricular myocytes (Table 1, [125,126]). Our previous simulation data using the models of mouse ventricular myocytes and ventricular tissues show that the prolongation of action potential can be a pro-arrhythmic factor causing a loss of stability at the cellular level [136] or action.
potential block at the tissue level at fast pacing rates [137]. Our model reproduces action potential prolongation and elucidates its mechanism. We found that the major effect on action potential at 25% and 50% repolarization comes from an increase in the inward L-type Ca\(^{2+}\) current, I_{Ca,L}, and the fast Na\(^{+}\) current, I_{Na}, and a decrease in the rapidly recovering transient outward K\(^{+}\) current, I_{Ks,rev}, which tend to prolong action potential, and an increase in the ultra-rapidly activating current, I_{Kur}, whose role is in action potential shortening (Fig. 17). At 73% and 90% repolarization, more currents, such as the Na\(^{+}/Ca\(^{2+}\) exchanger current, the Na\(^{+}-K\(^{+}\) pump current, the time-independent K\(^{+}\) current, I_{K1}, and the Na\(^{+}\) background current, I_{Na,rev}, are brought into play (Fig. 17). The total result of interaction is the moderate prolongation of action potential duration. Note that similar prolongation of the action potential duration upon stimulation of the β1-adrenergic signaling system was found in rat ventricular cells [10], however, the mechanism of the action potential prolongation and the role of major contributing currents were not investigated.

Frequency dependences of the action potential duration at different levels of repolarization show their different prolongations upon stimulation with isoproterenol (Table 1). While the prolongations of APD_{50} increase with the stimulation frequency, the prolongations of APD_{75} and APD_{90} demonstrate more complex behavior. Such differences are explained by the different major contributing currents to AP duration at different levels of repolarization without and with isoproterenol. A decrease in the prolongation magnitude of APD_{90} compared to APD_{90} upon application of isoproterenol is also observed in some experiments [125,126]; however, data of Wang et al. [75] demonstrated similar prolongations both for APD_{90} and APD_{50}. Further experiments are necessary to investigate this phenomenon.

This effect of β1-adrenergic receptor stimulation on action potential is different from that in larger species [8,11]. Experimental data shows that stimulation of β1-ARs reduces action potential duration in rabbits and dogs wild type ventricular myocytes [11,138]. The data of Volders et al. [138] shows that one of the major contributing factors in action potential shortening is an increase in the slow delayed-rectifier current, IK, upon activation of β1-ARs. The increase in IK overcomes the tendency of action potential to prolongation due to an increase in the L-type Ca\(^{2+}\) current, I_{Ca,L}. [138]. This result was also confirmed by simulations using models for rabbit and canine action potential which include the β1-adrenergic signaling system [8,11].

Thus, our model for the β1-adrenergic signaling system in mouse ventricular myocytes and the models of others for canine and rabbit cardiac cells [8,11] demonstrate different effects of β1-adrenergocceptor stimulations on the action potential durations, elucidate the mechanisms of these effects, and reveal the different ionic currents which are responsible for the changes.

The Effects of the β1-adrenergic Signaling System on Ca\(^{2+}\) Dynamics

As found experimentally, activation of the β1-adrenergic signaling system significantly increases the magnitude of intracellular [Ca\(^{2+}\)] transients, depending on the concentration of β1-ARs agonist [73,127,128,129,139]. The effect is more pronounced in rodent ventricular cells where the increase can reach up to 3 times [127], and a smaller effect is observed in larger species, such as rabbit and dog [139,140]. In addition to an increase in [Ca\(^{2+}\)] transient amplitude, β1-AR agonists increase the rate of [Ca\(^{2+}\)] decline.

There are several points of view on what is the major cause of the inotropy and lusitropy in the heart. It is clear that phosphorylation of phospholamban increases the pumping of Ca\(^{2+}\) into the SR upon stimulation of β1-AR and is considered a crucial regulator of cardiac function [27,141]. However, this phosphorylamban phosphorylation is not the only reason for such increase. Recently Eisner et al. [142] analyzed the major contributing factor to positive cardiac inotropy upon stimulation of β1-ARs. They considered four proteins that are affected by adrenergic stimulation: ryanodine receptors, SERCA pump, L-type Ca\(^{2+}\) channels, and troponin. Their analysis has shown that the L-type Ca\(^{2+}\) current is a major player that leads to positive cardiac inotropy. In our model, stimulation of the β1-adrenergic signaling system increases I_{Ca,L} by about twice compared to control cells (Fig. 9 [79,80,81]). This increase approximately doubles Ca\(^{2+}\) influx into the myocyte (see also our simulation data in Fig. 19), while Ca\(^{2+}\) extrusion from the myocyte, predominantly by the Na\(^{+}/Ca\(^{2+}\) exchanger, does not increase to the same degree. The resulting effect is an increase in Ca\(^{2+}\) influx into cell until a new dynamic quasi-steady-state is reached. Thus, our modeling data supports the view that the L-type Ca\(^{2+}\) current is a major player in cardiac inotropy in mouse ventricular myocytes, as also suggested by Eisner et al. [142].

Our model also supports the idea that the key contributor to cardiac lusitropy upon stimulation of β1-ARs is the SERCA Ca\(^{2+}\) pump. In mouse and rat ventricular myocytes, about 90% of the released Ca\(^{2+}\) is pumped back to the sarcoplasmic reticulum compared to about 70% in rabbits and larger species [27]. An estimation of Ca\(^{2+}\) influx into the SR by the SERCA pump during one cardiac cycle (1 Hz stimulation) before and after activation of the β1-adrenergic signaling system is 36 μM and 61 μM, respectively. This estimation correlates with about a two-fold decrease in the time constant of [Ca\(^{2+}\)]\(_i\) relaxation (Fig. 18). While the Na\(^{+}/Ca\(^{2+}\) exchanger also contributes to the [Ca\(^{2+}\)]\(_i\) relaxation, its contribution in mouse ventricular myocytes is less than 10%. In larger species, the Na\(^{+}/Ca\(^{2+}\) exchanger can make a larger contribution to the lusitropic effect, as its share is about 25–30% of the total released Ca\(^{2+}\).

There is also a long-term dispute among two groups of scientists who study ryanodine receptors (Marks group on the one hand and Valdivia and Houser group on the other) related to the physiological role of RyR phosphorylation in cardiac function [143]. Experimental data of Marks and co-authors demonstrated that enhanced phosphorylation of RyRs at S2808 in failing hearts results in an increased Ca\(^{2+}\) leak from the SR and leads to an increased arrhythmias [143,144]. The Houser and Valdivia group have shown opposite results: they found that RyR phosphorylation site S2808 does not produce significant physiological effects neither in wild type nor in infarcted mouse hearts [145]. Our simulations shows that phosphorylation of RyRs does not change Ca\(^{2+}\) sensitivity and does not produce significant physiological effect during stimulation of the β1-adrenergic signaling system, the results which are in line with the data from Houser and Valdivia group.

The Effects of the β1-adrenergic Signaling System on Na\(^{+}\) Fluxes

Our model of the β1-adrenergic signaling system in mouse ventricular myocytes is able to reproduce experimental data on a decrease in [Na\(^{+}\)]\(_i\) concentration upon activation of β1-ARs (Fig. 20, [100,127]). We also estimated a contribution of the different mechanisms of the Na\(^{+}\) entry and extrusion from the cell, experimental data for which are not available yet. Simulations at physiological frequency 5 Hz and without application of isoproterenol suggest that about 20% of Na\(^{+}\) enter the cell through the fast Na\(^{+}\) current, 32% through the Na\(^{+}/Ca\(^{2+}\) exchanger, and 48%
through the background mechanisms (large Na+ gradient, the Na+/H+ exchanger, the Na+/HCO3− co-transporter, etc.). With application of isoproterenol, the fraction of Na+ entry decreases for the fast Na+ current to 17%, increases to 46% for the Na+/Ca2+ exchanger, and decreases to 37% for the background mechanism. These fractions are different from those estimated for the larger species, such as rabbits [133]. For rabbits, about 22% of Na+ enter the cell through the fast Na+ current (which is similar to our estimations for mice), 60% through the Na+/Ca2+ exchanger, and 18% through the background mechanisms, suggesting the Na+/Ca2+ exchanger to be the major player in the Na+ transport into the cell. Further experiments are necessary to verify Na+ fluxes structure in mouse ventricular cells without and with application of isoproterenol estimated from the presented model.

Model Limitations
Despite that the presented model was extensively verified by the experimental data and reproduced most effects which result from stimulation of the β1-adrenergic signaling system, it has some limitations. One of these limitations is that some experimental data used for the model verification were obtained from different species, such as rats, canine, and rabbits. In this respect, some of the model parameters can be adjusted to fit the data obtained from mouse ventricular myocytes, when such data becomes available. A second source of the errors in model parameters is the low accuracy of biochemical experiments, which can vary by an order of magnitude (see for example data on PKA activation by cAMP). However, investigations by Soltis and Saucerman [146] are very encouraging about this issue. They have shown that the β1-adrenergic signaling system is robust, at least in steady-state, even when the model parameters change by 1–2 orders of magnitude. Third, not all model parameters are measured directly in the experiments, and, therefore, are adjusted numerically to fit the experimental data downstream in the signaling pathway. Finally, a fourth limitation comes from the availability of at least two other, β2-adrenergic and CaMKII-mediated, signaling systems that can potentially interact with the β1-adrenergic system. Experimental data with mice shows that the β2-adrenergic signaling system does not affect the β1-adrenergic system in control and upon application of isoproterenol [7]. This phenomenon is explained by the significantly larger concentration of the inhibitory G protein, Gi, compared to Gi, in mouse ventricular cells, which inhibits the stimulatory effects of the β2-ARs. The effects of β2-ARs can only be revealed upon additional application of pertussis toxin which suppresses the activity of Gi [7]. While the effects of the CaMKII-mediated signaling system are not taken into account in the presented model, the model of the β1-adrenergic signaling system still describes reasonably well most of the available experimental data on mouse ventricular myocytes. The author considers this model as the first step in the development of a more comprehensive compartmentalized model of the adrenergic signaling system in mouse ventricular myocytes.

Supporting Information
Appendix S1 Model equations and parameters. (PDF)

Acknowledgments
The author would like to thank Drs. H. Abriel, S. O. Døskeland, A. El-Armouche, J. Heijman, A. N. Lopatin, L. S. Maier, M. J. Morales, R. L. Rasmusson, and J. J. Saucerman for their valuable comments related to the different subjects of this paper, Brent Woolridge for drawing the scheme of the β1-adrenergic signaling system, and Paula D. Mullins for careful reading of the manuscript.

Author Contributions
Conceived and designed the experiments: VEB. Performed the experiments: VEB. Analyzed the data: VEB. Contributed reagents/materials/analysis tools: VEB. Wrote the paper: VEB.

References

