Rate of surface contamination in the operating suite during revision total joint arthroplasty

Matthew J. Dietz, MD a, *, Phillip A. Bostian, MD a, Emily P. Ernest, BS a, Adam E. Klein, MD a, P. Rocco LaSala, MD b, Benjamin M. Frye, MD a, Brock A. Lindsey, MD a

a Department of Orthopaedics, Health Sciences Center, WVU School of Medicine, Morgantown, WV, USA
b Department of Pathology, Health Sciences Center, WVU School of Medicine, Morgantown, WV, USA

Article history:
Received 1 August 2018
Received in revised form 14 September 2018
Accepted 17 September 2018
Available online 29 October 2018

Abstract

Background: This study estimated operating room surface contamination rates during aseptic vs septic revision total joint arthroplasty and evaluated the similarity between clinically infecting organisms and those isolated from contaminated surfaces.

Methods: Patients undergoing total hip and knee revision arthroplasties were identified, and surface and tissue samples were collected. Cases were classified aseptic or septic based on Musculoskeletal Infection Society criteria for prosthetic joint infection. Positive surface cultures were compared with intraoperative tissue cultures. Positive cultures were speciated and tested for antimicrobial sensitivity.

Results: Samples were collected from 31 aseptic and 18 septic cases. Patients had similar demographics and time to explantation. Surface contamination rates for septic revisions were greater than those for aseptic revisions (77% vs 13%). During septic revisions, when intraoperative tissue cultures were positive, the surgical field was contaminated in 14 of 15 cases. The kappa correlation statistic for positive surgical cultures matching the surface sample was 0.9 (95% confidence interval: 0.78–1).

Conclusions: Septic revisions had a significantly higher rate of surgical field contamination than aseptic revisions. Cultures suggest that bacteria contaminating the septic revision surgical field likely originated from the infected joint. Although this observation seems obvious, it is an important piece of information when discussing best practices during a single-stage exchange revision. Further clinical studies will demonstrate the use of a preparation and reset period during a single-stage revision to remove contaminated surfaces.

© 2018 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Prosthetic joint infection (PJI) is a well-recognized complication of hip and knee arthroplasty procedures and occurs in 0.7%–2.4% of cases [1,2]; it is projected that it will account for $1.6 billion in health-care costs by the year 2020 [1]. Currently, management of PJIs, which may include irrigation and debridement with retention of components in acute PJIs, has a substantial risk (64%; range, 11%–84%) of infection relapse [3–6]. Alternatively, management by two-stage exchange may yield greater likelihood of infection control but is associated with an increased morbidity and mortality [4,7,8]. The beneficial effect of two-stage exchange on infection control and survivorship has been addressed by Berend et al. among others, in which factoring the mortality of patients postoperatively brings the success rate to approximately 75% [4,9]. These studies support an increased focus on single-stage exchanges as highlighted by Haddad et al. and Jiranek et al. [10,11]. Evaluation of the single-stage exchange as a treatment for PJIs has highlighted the need for strict patient-selection criteria [11–13]. Adherence to these criteria and good surgical technique have led to reported successes equivalent or near equivalent to those of the two-stage exchange with less cost, decreased morbidity, and improved function [3,14,15]. Haddad described the preparation and reset period as the time after
thorough debridement and explantation of infected implant material when the wound is packed with betadine-soaked sponges and the wound edges temporarily approximated. The complete cleaning or change of surgical rooms is then undertaken with surgeons and assistant(s) changing into clean scrubs, new instruments being opened, and the patient being reprepped and redraped before the reimplantation of the final implants [11]. This step requires additional time for the patient under anesthesia and can add expense to an already costly surgery.

The main aim of this study was to estimate the rate of operative surface contamination during aseptic vs septic total hip and knee revision arthroplasties. Secondary aims were to evaluate the similarity between clinically infecting organisms and those isolated from the contaminated surfaces. Our hypothesis was that septic revisions would demonstrate higher contamination rates than aseptic revisions; although this may seem obvious, we are unaware of any published studies on this topic.

Material and methods

After obtaining institutional review board approval, we prospectively identified consecutive patients undergoing total hip or knee revision arthroplasties from October 2014 to July 2016. All surgeries were performed in one university-based hospital practice among four fellowship-trained orthopedic surgeons. Intraoperative tissue samples were excised with a scalpel from five separate areas, placed into a sterile container, and processed by the clinical microbiology laboratory as per the standard of care. After specimen collection, revisions were classified as either aseptic or septic according to the criteria outlined by the Musculoskeletal Infection Society at that time (current minor criteria have since been altered to exclude the presence of purulence and include leukocyte esterase changes in the synovial fluid.). Septic revisions were those that either had a sinus tract communicating with the prosthesis, a pathogen isolated by preoperative or intraoperative culture from two separate tissue or fluid samples obtained from the affected prosthetic joint, or four of the following six criteria: (1) elevated erythrocyte sedimentation rate and C-reactive protein (erythrocyte sedimentation rate > 30 mm/h; C-reactive protein > 10 mg/L), (2) elevated synovial fluid white blood cell count (>3000 cells/µL), (3) elevated synovial fluid neutrophil percentage (>65%), (4) presence of purulence in the affected joint, (5) isolation of a microorganism in a single periprosthetic tissue or fluid culture, or (6) >5 neutrophils per high-powered field in five high-powered fields observed at ×400 magnification [16].

Aseptic revisions and septic revisions with an identified infecting organism received antibiotics before incision. Antibiotics were held in septic revisions until intraoperative cultures were obtained or (6)

Results

Patients undergoing revision for aseptic vs septic PJR were of similar sex, age, and body mass index, although the septic group had a slightly increased American Society of Anesthesiologists classification score with a mean difference of 0.35 (95% confidence interval [CI] 0.01–0.69); $P = .045$ (Table 1). The time to explantation was seven minutes longer in the septic group (mean = 54.6 min, time to explantation in septic group, 47.3), but the difference was not significant (95% CI: 8.5 to 23 minutes, $P = .36$). All patients were classified as aseptic or septic revision before the surgery with the exception of one presumed aseptic patient who had 3 on 5 prosthetic tissue cultures positive for bacteria; therefore, this case was recategorized as a septic revision.

There were no positive clinical cultures among aseptic revisions. However, 15 of 18 septic revision cases returned with positive periprosthetic tissue cultures; the remaining three lacked positive tissue cultures but met the criteria of infection and were treated as such (Table 2). The contamination rate among aseptic revisions was 13% (431 cases) (95% CI: 5.8%–29%) with 3% (5155 surfaces) (95% CI: 1.2%–7.5%) of total sampled surfaces positive for contaminants. By contrast, the contamination rate for septic revisions was 78% (143 (95% CI: 54.8%–92%) with 50% (4590 (95% CI: 40%–60%) of total sampled surfaces positive for contaminants, which was significantly higher than those for aseptic revisions ($P < .001$).

Table 1 Characteristics of patients by aseptic vs septic revision.

<table>
<thead>
<tr>
<th>Demographic variable</th>
<th>Aseptic revisions</th>
<th>Septic revisions</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>31</td>
<td>18</td>
<td>.77</td>
</tr>
<tr>
<td>Number of females</td>
<td>15</td>
<td>10</td>
<td>.48</td>
</tr>
<tr>
<td>Age (y)</td>
<td>62.16</td>
<td>64.72</td>
<td>.80</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>33.64</td>
<td>34.29</td>
<td>.045</td>
</tr>
<tr>
<td>ASA class (1–4)</td>
<td>2.71 (+.53)</td>
<td>3.06 (+.64)</td>
<td>.045</td>
</tr>
<tr>
<td>Time to explantation (min)</td>
<td>54.62 (±28.93)</td>
<td>47.25 (±21.99)</td>
<td>.36</td>
</tr>
<tr>
<td>Total knee revisions</td>
<td>19</td>
<td>12</td>
<td>.77</td>
</tr>
<tr>
<td>Total hip revisions</td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

ASA, American Society of Anesthesiologists; BMI, body mass index.
A case was considered contaminated if one of the surfaces sampled had a positive culture (less than that for septic cases (2.5, range: 0-5) (Table 3) per case among aseptic cases (0.16, range: 0-2) was significantly less than that for septic cases (2.5, range: 0-5) (P < .0001). Drapes were the most frequently contaminated surface in both aseptic and septic revisions (Table 3).

Comparison of surface culture contaminants with isolates recovered by tissue culture for the 15 culture-positive septic revision cases revealed 14 matches (93%) (95% CI: [66, >99%]) to the species level compared with the 0% (0/31) correlation seen in aseptic revisions (P < .0001). In comparison, only 33% (95% CI: 6%-79%) of the culture-negative septic revisions exhibited contamination (P = .56). Also, the kappa correlation statistic for positive surgical cultures matching the surface sample was 0.9 (95% CI: 0.78-1). One septic revision case had a positive tissue culture, but no organisms were isolated as contaminants; the patient had been on intravenous antibiotics for several days for the treatment of a concurrent discitis before obtaining intraoperative cultures from the joint. The percent of positive surgical cultures matching the contaminating organism was 93% (13/14) (95% CI: 66%-99%).

Discussion

In this prospective consecutive series of hip and knee revision arthroplasties, septic revisions had a significantly higher rate of surgical field contamination than aseptic revisions. Although it may seem obvious that septic revisions would lead to more contamination of the operative surfaces, this study is the first published finding to support this assumption. The bacteria found as contaminants are listed in Table 4. Similarly, comparison of antimicrobial susceptibility data between organisms recovered from septic revision tissue cultures and those from corresponding operative surface cultures demonstrated identical profiles in 34 of 34 instances (100%).

Table 2
Characteristics of aseptic vs septic revisions: contamination rates and degree of correlation to the infection organism identified in the surgical cultures.

<table>
<thead>
<tr>
<th>Recorded results</th>
<th>Aseptic revisions</th>
<th>Septic revisions</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>31</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Positive clinical cultures</td>
<td>0</td>
<td>15</td>
<td><.001</td>
</tr>
<tr>
<td>Contamination cases with surface contamination</td>
<td>13% (4/31) [95% CI: 5%-29%]</td>
<td>78% (14/18) [95% CI: 54, 92%]</td>
<td><.001</td>
</tr>
<tr>
<td>Contamination rate excluding culture-negative cases</td>
<td>13% (4/31) [95% CI: 5%-29%]</td>
<td>93% (14/15) [95% CI: 66%-100%]</td>
<td><.0001</td>
</tr>
<tr>
<td>Percent correlation surgical culture and positive sample</td>
<td>0.16 (0-2)</td>
<td>2.50 (0-5)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

A case was considered contaminated if one of the surfaces sampled had a positive culture (≥2 colony-forming units/plate).

Table 3
Number of positive samples per surface for aseptic and septic revisions.

<table>
<thead>
<tr>
<th>Number of positive samples per surface</th>
<th>Aseptic revisions</th>
<th>Septic revisions</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloves</td>
<td>0</td>
<td>11</td>
<td><.001</td>
</tr>
<tr>
<td>Gown</td>
<td>1</td>
<td>9</td>
<td><.001</td>
</tr>
<tr>
<td>Scalpel handle</td>
<td>1</td>
<td>6</td>
<td><.0037</td>
</tr>
<tr>
<td>Light handle</td>
<td>1</td>
<td>6</td>
<td><.0037</td>
</tr>
<tr>
<td>Drapes</td>
<td>2</td>
<td>13</td>
<td><.001</td>
</tr>
</tbody>
</table>

* Each surface was sampled once during each case. Multiple surfaces could be positive in one case.

Furthermore, the mean number of contamination-positive samples per case among aseptic cases (0.16, range: 0-2) was significantly less than that for septic cases (2.5, range: 0-5) (P < .0001). Drapes were the most frequently contaminated surface in both aseptic and septic revisions (Table 3).

Comparison of surface culture contaminants with isolates recovered by tissue culture for the 15 culture-positive septic revision cases revealed 14 matches (93%) (95% CI: [66, >99%]) to the species level compared with the 0% (0/31) correlation seen in aseptic revisions (P < .0001). In comparison, only 33% (95% CI: 6%-79%) of the culture-negative septic revisions exhibited contamination (P = .56). Also, the kappa correlation statistic for positive surgical cultures matching the surface sample was 0.9 (95% CI: 0.78-1). One septic revision case had a positive tissue culture, but no organisms were isolated as contaminants; the patient had been on intravenous antibiotics for several days for the treatment of a concurrent discitis before obtaining intraoperative cultures from the joint. The percent of positive surgical cultures matching the contaminating organism was 93% (13/14) (95% CI: 66%-99%). One septic revision case had a positive tissue culture, but no organisms were isolated as contaminants; the patient had been on intravenous antibiotics for several days for the treatment of a concurrent discitis before obtaining intraoperative cultures from the joint. The percent of positive surgical cultures matching the contaminating organism was 93% (13/14) (95% CI: 66%-99%).

This study demonstrated a contamination rate of 13% in aseptic revisions at an average explant time of 54 minutes, which is similar to other reported rates of contamination during the course of surgery [17-19]. Davis et al. described a 9.5% overall contamination rate when comparing covered (2%) to uncovered (16.7%) implant trays [17]. Davis et al. described 63% of cases as having some level of contamination [20]. However, many of the recommendations (eg, removing gloves after initial preparation) are now routinely used by surgeons to mitigate against contamination. We note that the length of time before sampling was not different between the aseptic and septic groups. In reviewing the literature, the duration of surgery has been demonstrated to increase contamination rates. Dalstrom et al. demonstrated a 15% contamination rate at one hour increasing to 30% at 4 hours [18,21]. Ritter et al. found a 33-fold increase in colony-forming units per hour in a room with five people compared with an undisturbed room [22,23]. Although others have found no relationship between time and rates of contamination, [19,20] we felt it important to consider this potentially confounding variable. In 13% of our aseptic cases with contamination, most organisms isolated from surfaces were not typical of PJJ (the single exception being Staphylococcus epidermidis). The only difference we found in baseline characteristics was a slightly elevated American Society of Anesthesiologists score in the septic group, which one might expect from a patient population presenting as more acutely ill.

We did find a significantly higher rate of contamination in the septic cases. This percentage is even higher when excluding specimens that had no culturable organisms (culture-negative cases) from clinical specimens. These three cases met Musculoskeletal Infection Society criteria despite sterile intraoperative and/or preoperative cultures. We speculate that the inability to recover organisms from surface sites for these three cases may have been due to a contamination event during the incision or skin preparation in a patient population presenting as more acutely ill.

Table 4
Highlights the organisms presenting as contaminants from the sampled surfaces.

<table>
<thead>
<tr>
<th>Contaminant present</th>
<th>Aseptic cases</th>
<th>Septic cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus haemolyticus</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>Methicillin-sensitive Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>aurimucosum</td>
<td>Methicillin-resistant Staphylococcus epidermidis</td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>Methicillin-sensitive Staphylococcus epidermidis</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas species</td>
<td>Serratia marcescens</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus lugdunensis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* All contaminants listed were also found on intraoperative tissue cultures.
to the fastidious nature of the organism(s), which also likely hampered their recovery from clinical samples. We also found that the average number of surfaces contaminated during a septic case vs an aseptic case was significantly different.

The drapes were the most frequently contaminated surface, followed by the surgeon’s gloves, surgeon’s gown, and then scalpels, handles and lights. Prior reports demonstrate a contamination rate of 0%-14.5% for light handles [20,24], 9% for scalpel blades [20], 14%-57% for gloves [20,25], 6%-48% for gowns [20]. These rates were not witnessed in our aseptic revisions, but similar rates were observed in the septic revisions.

This study supports our hypothesis that septic revisions would have higher contamination rates than aseptic revisions. Although this observation seems somewhat obvious, it is an important piece of information in a discussion of the use of a preparation and reset period during a single-stage exchange. Currently, only expert-level information in a discussion of the use of a preparation and reset process exists [21]. This step prolongs the anesthetic time for the patient and increases the expense of the surgery from a materials standpoint; however, it is thought to be a necessary step for the success of this procedure.

Therefore, the recommendation of Haddad et al. and Jiranek et al. for the wholesale exchange of all operating room materials and for all personnel to change their scrubs while the wound remains temporarily closed merits consideration [10-12,21]. However, further prospective collection of data is required to definitively support this practice.

Conclusions

Septic revision arthroplasties had a significantly higher rate of surgical field contamination than aseptic revisions. Bacteria contaminating the surgical field of septic revisions most often originated from the infected joint itself, based on the matching of surface cultures and tissue cultures. These results may support the practice of exchanging gowns, gloves, drapes, and instruments after prosthesis explantation during septic revisions to eliminate contaminated surfaces and reduce bacterial presence at the time of reimplantation. This topic needs to be studied further in a prospective manner with follow-up with longer term outcomes.

Acknowledgments

This work was supported by a Faculty Senate Research Grant from West Virginia University. The sponsor had no role in the study design; collection, analysis or interpretation of the data; the writing of the manuscript; or the decision to submit the article for publication (Research and Scholarship Advancement (RSA) Grant, West Virginia).

In addition, the research reported in this publication was supported by the National Institutes of Health under Award Number 5u54GM104942-03. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References