Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation

Mathijs Vleugel,1 Eelco Tromer,1,2,4 Manja Omerzu,1,2 Vincent Groenewold,2,5 Wilco Nijenhuis,1 Berend Snel,4 and Geert J.P.L. Kops1,2,3,5

1Molecular Cancer Research and 2Department of Medical Oncology and 3Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG, Utrecht, Netherlands
4Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, Netherlands
5Netherlands Proteomics Center, 3584 CH Utrecht, Netherlands

Fidelity of chromosome segregation relies on coordination of chromosome biorientation and the spindle checkpoint. Central to this is the kinetochore scaffold KNL1 that integrates the functions of various mitotic regulators including BUB1 and BUBR1. We show that KNL1 contains an extensive array of short linear sequence modules that encompass TxxΩ and MELT motifs and that can independently localize BUB1. Engineered KNL1 variants with few modules recruit low levels of BUB1 to kinetochores but support a robust checkpoint. Increasing numbers of modules concomitantly increase kinetochore BUB1 levels and progressively enhance efficiency of chromosome biorientation. Remarkably, normal KNL1 function is maintained by replacing all modules with a short array of naturally occurring or identical, artificially designed ones. A minimal array of generic BUB recruitment modules in KNL1 thus suffices for accurate chromosome segregation. Widespread divergence in the amount and sequence of these modules in KNL1 homologues may represent flexibility in adapting regulation of mitotic processes to altered requirements for chromosome segregation during evolution.

Introduction

Equal distribution of the replicated genome during mitosis is essential for accurate propagation of genetic information and the maintenance of healthy tissues. Large multiprotein complexes known as kinetochores perform several essential functions in this process (Cheeseman and Desai, 2008; Foley and Kapoor, 2013). These include generating and maintaining physical attachment between chromatids and microtubules of the mitotic spindle, and signaling to the spindle assembly checkpoint (SAC, also known as the mitotic checkpoint) when kinetochores are unbound by microtubules. Such checkpoint signaling involves production of a diffusible inhibitor of anaphase onset (Chao et al., 2012; Vleugel et al., 2012).

Chromosome biorientation as well as SAC activity critically rely on the kinetochore scaffold KNL1/CASC5/AF15q14/Blinkin (hereafter referred to as KNL1; Cheeseman et al., 2006, 2008; Kiyomitsu et al., 2007). This long, largely unstructured protein is a member of the KN1/MIS12 complex/NDC80 complex (KMN) network that constitutes the microtubule-binding site of kinetochores (Cheeseman and Desai, 2008). KNL1 itself directly contributes to this through its N-terminal microtubule-binding region (Welburn et al., 2010; Espeut et al., 2012), but also by localizing the paralogues BUB1 and BUBR1 to kinetochores. The pseudokinase BUBR1 (Suijkerbuijk et al., 2012a) is a component of the mitotic checkpoint complex (Chao et al., 2012) and additionally binds the PP2A-B56 phosphatase that is required for stabilizing kinetochore–microtubule interactions (Foley et al., 2011; Suijkerbuijk et al., 2012b; Kruse et al., 2013; Xu et al., 2013). BUB1, in turn, promotes efficient chromosome biorientation by localizing the Aurora B kinase to inner centromere regions via phosphorylation of H2A-T120 (Kawashima et al., 2010; Yamagishi et al., 2010). Its contribution to checkpoint
signaling, although important, is not entirely clear (Tang et al., 2004; Klebig et al., 2009).

Although recruitment of BUB1 and BUBR1 (the BUBs) to kinetochores is critical for error-free chromosome segregation, the mechanism by which KNL1 accomplishes this is unknown. Both BUBs directly interact via their conserved TPR domains with two so-called KI motifs in the N-terminal 250 amino acids of human KNL1 (Bolanos-Garcia and Blundell, 2011; Kiyomitsu et al., 2011; Krenn et al., 2012). These interactions may, however, not be required for BUB1/BUBR1 kinetochore localization (Krenn et al., 2012), and the KI motifs are not apparent in nonvertebrate eukaryotic KNL1 homologues (Vleugel et al., 2012). In contrast, kinetochore binding of at least BUB1 relies on MPS1-mediated phosphorylation of the threonine within MELT-like sequences of KNL1 in humans and yeasts (Shepperd et al., 2012; London et al., 2012; Yamagishi et al., 2012). Such MELT-like sequences can be identified in numerous KNL1 homologues (Vleugel et al., 2012).

In this study, we set out to investigate the mode of BUB recruitment to kinetochores, and show that KNL1 is an assembly of previously unrecognized repeating modules. These modules operate in a generic fashion to recruit sufficient BUB proteins to kinetochores to ensure high-fidelity chromosome segregation.

Results

The N-terminal MDLT-KI module in KNL1 independently recruits BUB proteins

BUB1 and BUBR1 directly bind to KI motifs (KI1 and KI2) that are located near the N terminus of KNL1 (Bolano-Garcia and Blundell, 2011; Kiyomitsu et al., 2011; Krenn et al., 2012). Their localization to kinetochores additionally requires MPS1-dependent phosphorylation of MELT-like sequences (London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012), although it is unknown which of these sequences are phosphorylated and which ones are important for BUB recruitment and KNL1 function. Because one such MELT-like sequence (MDLT) is located close to the two KI motifs, we examined whether the N-terminal region (1–261) of KNL1 encompassing MDLT-KI1-KI2 is sufficient to bind BUB1 and BUBR1. To this end, the KNL1 fragment was fused to LacI and tethered to an ectopic Lac operator (LacO) array that is stably integrated in the short arm of chromosome 1, distant to the centromere (1p36) in U2OS cells (Fig. S1 A; Janicki et al., 2004). LacI-LAP-KNL11–261 recruited endogenous BUB1 and BUBR1 to the LacO array in mitotic cells (Fig. 1 A; Fig. S1 B). This required the MDLT and KI1 sequences because mutation of these motifs (MDLT to MDLA [KNL1MDLT] or KIDTSE to KIDATS A [KNL1KI1]; Krenn et al., 2012) prevented both BUBs from localizing to the LacO array (Fig. 1 A; Fig. S1 B). In addition, BUBR1 but not BUB1 localization was also lost after mutating the KI2 motif (KIFNDF to KIDANDA [KNL1KI2]; Bolanos-Garcia et al., 2011; Krenn et al., 2012). Thus, at least in the context of the ectopic KNL1 fragment, BUB1 recruitment to KNL1 is dependent on all three motifs (Fig. 1 A; Fig. S1 B).

The N-terminal MDLT-KI module in KNL1 is sufficient to support SAC activity but not chromosome biorientation

To next assess the contribution of the N-terminal module to KNL1’s function in the SAC and chromosome biorientation, we generated a LAP-tagged KNL1 variant in which this region was directly fused to the C-terminal kinetochore localization domain of KNL1 (aa 1834–2342: generating KNL1-NC; Fig. S1 C). This ensured maintenance of proper KMN network integrity, KNL1 position on the outer kinetochore, and Zwint-1 and HP1 kinetochore localization (Kiyomitsu et al., 2007; Petrovic et al., 2010). Full-length KNL1 (KNL1-FL) and the C-terminal domain of KNL1 (KNL1-C) were used as controls. To ensure comparable genetic background and expression levels, siRNA-resistant KNL1 variants were expressed from a doxycycline-inducible promoter at a single integration site in HeLa cells (Klebig et al., 2009). All KNL1 variants efficiently incorporated into the outer kinetochore to similar levels, as judged by immunofluorescence (Fig. 1, B–D). Functionality of these proteins was assayed by their ability to restore KNL1 function upon siRNA-mediated depletion of endogenous KNL1. Depletion of KNL1 removed BUB1 and BUBR1 from kinetochores (Fig. 1, B–D), and this was restored by expression of KNL1-FL and weakly by KNL1-N C, but not by KNL1-C (Fig. 1, B–D). In support of this, comparative proteomics analysis of LAP-KNL1 pull-downs showed strong reduction in BUB co-precipitation with KNL1-NC compared with KNL1-FL (Fig. S1 D). The observation that KMN network members were present in roughly equal amounts in both pull-downs, and that MPS1 kinetochore localization was similar in cells expressing the KNL1 variants, further verified that KMN network integrity was unaffected in the various cell lines (Fig. S1, D–F; Nijenhuis et al., 2013).

KNL1 depletion severely weakened the SAC: nocodazole-treated cells depleted of KNL1 rapidly exited mitosis when MPS1 kinase activity was slightly reduced with a low dose of reversine (250 nM; Santaguida et al., 2011; Saurin et al., 2011), whereas control cells maintained mitotic delays for many hours (Fig. 2 A; Fig. S2 A). Incomplete penetration of RNAi or a nonessential role for KNL1 in the SAC can account for the residual weak SAC response in KNL1-depleted cells (Fig. S2 B), and we were unable to distinguish between these possibilities because no residual kinetochore KNL1 or BUB1/BUBR1 was detectable in siKNL cells. Regardless, the high sensitivity of nocodazole-treated, KNL1-depleted cells to low concentrations of reversine allowed us to examine functionality of KNL1 variants in the SAC. Somewhat unexpectedly, KNL1-NC was equally efficient as KNL1-FL in restoring SAC signaling to KNL1-depleted cells (Fig. 2 A). In agreement with this, KNL1-NC was able to recruit significantly more MAD1 to kinetochores than KNL1-C (Fig. S1, G and H). Checkpoint activity of KNL1-NC depended on the MDLT and KI motifs (Fig. S2 C), indicating that KNL1-NC was able to recruit sufficient amounts of BUB proteins to perform SAC signaling. In support of this, SAC activity in KNL1-NC– but not KNL1-FL–expressing cells was highly sensitive to BUB1 levels (Fig. 2 B), and weak but detectable H2A-Thr120 phosphorylation (a mark that depends on BUB1 activity; Kawashima et al., 2010) was restored on centromeric.
KNL1 recruits BUBs by arrayed linear sequence modules

Vleugel et al.

Our analyses of KNL-NC function showed that the N-terminal MDLT-KI1-KI2 fragment of KNL1 recruited low amounts of BUB1 to kinetochores but was sufficient to maintain a robust SAC. To examine if the N-terminal fragment was also required for full-length KNL1 to promote SAC activity, we analyzed function of KNL1 carrying mutations in this fragment. BUB1 localization as well as SAC activity were indistinguishable in KNL1-depleted cells expressing KNL1 with mutations in the MDLT or KI motifs (KNL1-FL_MDLA or KNL1-FL_KI1) or lacking the module altogether (KNL1 _KI1; Fig. S2, F and G). In addition, cells expressing full-length KNL1 with mutations in either of the KI motifs (KNL1-FL_KI1 or KNL1-FL_KI2) restored chromosome alignment as efficiently as wild-type KNL1 and progressed through an unperturbed mitosis with similar kinetics, even in a sensitized situation (Fig. S2, H–J; Kiyomitsu et al., chromatin by KNL1-NC (Fig. 2 B). We thus conclude that KNL1-NC can support robust SAC function by recruiting low levels of BUB proteins to kinetochores.

Two observations indicated that unlike the SAC, chromosome biorientation was not efficiently restored in cells expressing KNL1-NC. First, KNL1-NC was unable to support chromosome alignment in cells that were prevented from exiting mitosis by addition of the proteasome inhibitor MG132 (Fig. 2 D). Second, KNL1-NC expression caused long mitotic delays, likely due to absence of proper kinetochore–microtubule attachment that prevents SAC silencing (Fig. 2 E; Fig. S2, D and E).

Together, these data indicate that the N-terminal MDLT-KI1-KI2 motifs in KNL1 function as an independent module that is capable of activating the SAC by recruiting low BUB levels to kinetochores, but is insufficient for proper chromosome biorientation.

Figure 1. The N-terminal MDLT-KI module in KNL1 independently recruits BUB proteins. (A) Immunolocalization of BUB1 (left panels, red) and BUBR1 (right panels, red) in LacI-LAP-KNL1_1–261–transfected, nocodazole-treated U2OS-LacO cells. LacI-LAP-KNL1_1–261 is shown in green and DNA (DAPI) is in blue. Insets show magnifications of the boxed regions. KNL1_KI1 denotes LacI-LAP-KNL1_1–261 in which KID_FTS is mutated to KID_ATS, KNL1_KI2 is KID_FTS mutated to KID_NTS, and KNL1_MDLT is mutated to KID_NTS. Bars, 5 µm (insets, 0.5 µm). (B–D) Representative images (B and C) and quantification (D) of LAP-KNL1–expressing Flp-in HeLa cells transfected with siRNAs to luciferase (siLUC) or to KNL1 (siKNL1) and treated with nocodazole. LAP-KNL1 is shown in green, BUB proteins in red, centromeres (CREST) in blue, and DNA (DAPI) in white. Bars, 5 µm. Quantification in D shows total kinetochore signal intensity (+SD) of LAP-KNL1 and BUB proteins over CREST. Data are from >15 cells and representative of 3 experiments. Levels of kinetochore BUBs in control cells and of kinetochore LAP-KNL1 in KNL1-FL–expressing cells are set to 1.

KNL1 contains multiple independent BUB recruitment modules

Our analyses of KNL-NC function showed that the N-terminal MDLT-KI1-KI2 fragment of KNL1 recruited low amounts of BUB1 to kinetochores but was sufficient to maintain a robust SAC. To examine if the N-terminal fragment was also required for full-length KNL1 to promote SAC activity, we analyzed function of KNL1 carrying mutations in this fragment. BUB1 localization as well as SAC activity were indistinguishable in KNL1-depleted cells expressing KNL1 with mutations in the MDLT or KI motifs (KNL1-FL_MDLA or KNL1-FL_KI1) or lacking the module altogether (KNL1_KI1; Fig. S2, F and G). In addition, cells expressing full-length KNL1 with mutations in either of the KI motifs (KNL1-FL_KI1 or KNL1-FL_KI2) restored chromosome alignment as efficiently as wild-type KNL1 and progressed through an unperturbed mitosis with similar kinetics, even in a sensitized situation (Fig. S2, H–J; Kiyomitsu et al.,...
Interestingly, LacI-LAP-KNL1_{70–261} was the only fragment that could recruit detectable amounts of BUBR1 to the LacO array (Fig. S3, A and B). Using the repeat-finding algorithm MEME (Bailey et al., 2009), we noticed that KNL1 consists of 19 repeating modules that include but are not limited to MELT-like sequences (Fig. 3, A and C). MELT-like sequences, when phosphorylated by MPS1, are thought to participate in BUB recruitment to unattached kinetochores (London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012). The repeating modules uncovered by MEME consist of a MELT-like sequence flanked on the C-terminal side by SHT and on the N-terminal side by the sequence TΩ[ST][DE] (where 2007, 2011). We thus conclude that, although able to bind BUBs (Fig. 1 A) and support SAC activity (Fig. 2 A), the N-terminal KI-containing module is dispensable for KNL1 function, at least in our assays. Most likely, therefore, KNL1 can recruit BUBs by alternative means.

To test whether additional regions in KNL1 could also function as independent BUB recruitment modules, we analyzed the ability of various KNL1 fragments to recruit BUBs to LacO arrays. The LacI-LAP-KNL1_{70–261}, the LacI-LAP fusions of KNL1_{262–317}, KNL1_{1052–1292}, and KNL1_{1293–1833} were sufficient to recruit BUB1 to the LacO array, whereas LacI-LAP, LacI-LAP-KNL1_{1293–1833}, and LacI-LAP-KNL1-C were not (Fig. 3, A and B; Fig. S3 B). Interestingly, LacI-LAP-KNL1_{70–261} was the only fragment that could recruit detectable amounts of BUBR1 to the LacO array (Fig. S3, A and B). Using the repeat-finding algorithm MEME (Bailey et al., 2009), we noticed that KNL1 consists of 19 repeating modules that include but are not limited to MELT-like sequences (Fig. 3, A and C). MELT-like sequences, when phosphorylated by MPS1, are thought to participate in BUB recruitment to unattached kinetochores (London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012). The repeating modules uncovered by MEME consist of a MELT-like sequence flanked on the C-terminal side by SHT and on the N-terminal side by the sequence TΩ[ST][DE] (where

Figure 2. The N-terminal MDLT-KI module in KNL1 is sufficient to support SAC activity but not chromosome biorientation. [A] Time-lapse analysis of Flp-in HeLa cells expressing LAP-KNL1 variants, transfected with siLUC or siKNL1, and treated with nocodazole and 250 nM reversine. Data (n = 40 representative of 3 independent experiments) indicate cumulative fraction of cells that exit from mitosis (as scored by cell morphology using DIC) at the indicated time after NEB. [B] As in A, but with transfection of the indicated siRNAs. [C] Immunostaining and quantification of centromeric H2A-Thr120 phosphorylation in Flp-in HeLa cells expressing LAP-KNL1 variants, transfected with siLUC or siKNL1, pH2A-Thr120 is shown in green, centromeres [CREST] in red, and DNA [DAPI] in blue. Bars, 5 µm. pH2A-Thr120 is quantified over CREST (n = 10 representative of 3 independent experiments). [D] Immunostaining and quantification of chromosome alignment in Flp-in HeLa cells expressing LAP-KNL1 variants, transfected with siLUC or siKNL1, and treated with MG132 for 45 min. Tubulin is shown in green, centromeres [CREST] in red, and DNA [DAPI] in blue. Bars, 5 µm. The data shown are from a single representative experiment out of three repeats. For the experiment shown, n = 50. [E] Time-lapse analysis of Flp-in HeLa cells expressing LAP-KNL1 variants and transfected with siLUC or siKNL1. Data (n = 40 representative of 3 independent experiments) indicate cumulative fraction of cells that exit from mitosis at the indicated time after NEB (as scored by GFP-H2B).
To study functionality of the TΩ-MELT motifs, we analyzed their contribution to the ability of the KNL1
818–1051 fragment to recruit BUB1. This fragment contains three TΩ-MELT repeat modules, and will be
referred to as the M3 fragment. A mutated version of this fragment, in which four amino acids in each
TΩ-MELT module were substituted for alanine (TΩ-MELT to AA-AELA), will be referred to as A3. BUB1 recruit-
ment to LacI-KNL1 818–1051 depended on TΩ-MELT motifs, as the A3 fragment was unable to localize
BUB1 to the LacO arrays (Fig. 3 E; Fig. S3, C and D). Furthermore, the TΩ and the

Φ denotes a hydrophobic residue and Ω denotes F or Y), which we will refer to as “TΩ” motifs (Fig. 3 D). Although overall quite
different in sequence, the TΩ motifs have resemblance to KI1, in which the threonine and phenylalanine in the TxxF
sequence (KIDTTSFIA) directly interact with BUB1 and are indispensable for KNL1–BUB1 interaction (Krenn et al., 2012). For conve-
nience, we will refer to these repeating modules as “TΩ-MELT.” 10 modules adhere closely to the TΩ-MELT sequence (1, 4, 6, 8,
12–14, 16–18), whereas the remaining nine deviate to some degree in either the TΩ, the MELT, or both motifs (Fig. 3 C).
Figure 4. Engineered KNL1 proteins reveal differential requirements for TΩ-MELT modules in the SAC and chromosome biorientation. [A] Schematic representation of synthetic LAP-KNL1 constructs, showing the microtubule- and PP1-binding domain in green and the kinetochore recruitment domain in orange. KI1 and KI2 motifs are shown as green bars, MELT-like sequences in blue, and TxxΩ-like sequences in red. See main text for details about constructs. (B and C) Representative images [B] and quantification [C] of LAP-KNL1-expressing Flp-in HeLa cells transfected with siRNAs to luciferase [siLUC] or to KNL1 [siKNL1] and treated with nocodazole. LAP-KNL1 is shown in green, BUB1 in red, centromeres (CREST) in blue, and DNA (DAPI) in white. Bars, 5 µm. Quantification in C shows total kinetochore signal intensity (+SD) of LAP-KNL1 and BUB proteins over CREST. Data are from >15 cells and representative.
MELT motifs were each indispensable for the ability of LacI-KNL1318–1051 to recruit BUB1 because mutating either TΩ or MELT abolished BUB1 localization (Fig. 3 E; Fig. S3, C and D). The TΩ motif was also critical for the N-terminal module that uniquely contains KI1 and KI2 (Fig. S3, E and F).

Engineered KNL1 proteins reveal differential requirements for TΩ-MELT modules in the SAC and chromosome biorientation

Our observations that the N-terminal module is sufficient but not required for the SAC, that this module is insufficient for proper chromosome biorientation, and that other modules in KNL1 highly resemble this N-terminal module raised the question of whether there is functional redundancy between modules or whether some modules have specialized. To examine this, we generated a KNL1 protein devoid of all TΩ-MELT–like modules but containing the N-terminal-most 86 amino acids (responsible for microtubule and PP1 binding) fused to KNL1-C (Kiyomitsu et al., 2007; Liu et al., 2010; Welburn et al., 2010). Into this protein, named KNL1-NC, we inserted one or two of the M3 fragments to create KNL13–M3 and KNL15–M2–M3, respectively (Fig. 4 A). A1 fragments were used as control, as well as combinations of M3 and A3 fragments, giving rise to KNL13–A3, KNL13–A3–A3, KNL13–A2–M3, and KNL13–M2–A3 (Fig. 3 E; Fig. 4, A and D). Isogenic cell lines with inducible expression of these engineered KNL proteins were generated and analyzed for functionality of various processes upon depletion of endogenous KNL1. Strikingly, the amount of BUB1 detectable at unattached kinetochores followed the amount of repeat modules present in KNL1: a single module (KNL1-NC) recruited low amounts of BUB1, one block of three modules (KNL13–M3) recruited approximately threefold more BUB1, and two blocks totaling six modules (KNL13–M3–M3) doubled that to close to the levels observed in KNL-FL reconstituted cells (Fig. 4, B and C). Absence of any module (KNL13 or KNL13–A3–A3) eliminated BUB1 kinetochore binding. These data are indicative of a direct correlation between the number of functional TΩ-MELT modules and the amount of BUB1 protein at mitotic kinetochores. Interestingly, although BUB1 did not interact with amino acids 818–1051 in KNL1 in the context of the LacO array (Fig. S3, A and B), KNL13–M3–M3 was able to recruit BUB1 to kinetochores (Fig. S4, A and B). This suggested that BUB1 recruitment to KNL1 requires the context of kinetochores.

All KNL1 variants that contained at least one M3 fragment (M3, M3–M3, A3–M3, and M3–A3) were proficient in recruiting MAD1 and supporting the SAC (Fig. S1, G and H; Fig. 4 E). Because SAC activity was also supported by a single module in the context of the N-terminal fragment (KNL1-NC; see Fig. 2 A), we next examined whether any single module could support the SAC. To this end, one TΩ-MELT module was restored in KNL13–A3–A3, creating the KNL13–A3–AMA protein (Fig. 4 D). Although able to recruit low levels of kinetochore BUB1 and promote partial H2A-T120 phosphorylation (Fig. S4, C–E), KNL13–A3–AMA could not recover SAC activity (Fig. 4 E). We thus conclude that a single module recruits sufficient BUB1 for SAC activation only in the context of the N-terminal fragment, whereas more than one is needed in the context of other KNL1 fragments.

The N-terminal BUB recruitment module is unique in two ways: it is close to the PP1- and microtubule-binding site on KNL1, and it contains the KI motifs that in the context of KNL1-NC significantly contribute to BUB recruitment and SAC activity (Fig. 1 A; Fig. S2 C). To examine if either of these is the cause of the difference in ability of KNL1-NC and KNL13–A3–AMA to support SAC activity, we placed KI1 and KI2 downstream of the TΩ-MELT module in KNL13–A3–AMA (resulting in KNL13–A3–AM-KI1-KI2; see Fig. 4 D). Strikingly, adding KI1 and KI2 to KNL13–A3–AMA endowed the protein with SAC function (Fig. 4 F) and this correlated with a slight increase in kinetochore BUB1 to close to the levels attained by KNL1-NC (Fig. S4, F and G). These data therefore indicate that the KI motifs enhance BUB recruitment potential of individual TΩ-MELT modules, and as such allow the N-terminal module to be sufficient for SAC function.

Time-lapse imaging of mitotic progression in the different cell lines showed that increasing amounts of repeat modules gradually decreased the time from nuclear envelope breakdown (NEB) to metaphase (Fig. 4 G). This corresponded to increased efficiency of chromosome alignment, as assayed in fixed MG132-treated mitotic cells (Fig. 4 H). Directly in line with BUB1 levels, three modules were more efficient than one, whereas six modules were more efficient than three. In fact, cells expressing KNL13–M3–M3 were almost as efficient in chromosome alignment as control cells or cells expressing KNL1-FL and displayed comparable mitotic timing (Fig. 4, G and H). High fidelity chromosome segregation in human cells therefore requires between four and six TΩ-MELT modules that combine to recruit sufficient BUBs.

Functional TΩ-MELT modules in KNL1 are redundant and exchangeable

Our observations with the engineered KNL1 proteins suggested that the modules within the M3 fragment may be redundant and that their functionality in SAC activity is independent of exact of 3 experiments. Levels of kinetochore BUBs in control cells and of kinetochore LAP-KNL1 in KNL1-FL–expressing cells are set to 1. (D) Schematic as in A. See main text for details about constructs. (E) Time-lapse analysis of Flp-in HeLa cells expressing LAP-KNL1 variants, transfected with siLUC or siKNL1, and treated with nocodazole and 250 nM reversine. Data (n = 40 representative of 3 independent experiments) indicate cumulative fraction of cells that exit from mitosis (as scored by cell morphology using DIC) at the indicated time after NEB. (F) As in E, with the indicated constructs. (G) Time-lapse analysis of Flp-in HeLa cells expressing LAP-KNL1 variants and transfected with siLUC or siKNL1. Data (n = 40 representative of 3 independent experiments) indicate cumulative fraction of cells that exit from mitosis at the indicated time after NEB (as scored by OFF-H2B). (H) Quantification of chromosome alignment in Flp-in HeLa cells expressing LAP-KNL1 variants, transfected with siLUC or siKNL1, and treated with MG132 for 45 min. The data shown are from a single representative experiment out of three repeats. For the experiment shown, n = 40.
position in relation to the kinetochore or to the microtubule-and PP1-binding sites. This raised the possibility that redundancy is relatively widespread across the 19 identified repeat modules. To examine this, we designed artificial fragments, based on existing TΩ-MELT modules, and tested their functionality in the context of KNL1. We swapped module 12, 13, and 14 within the M₃ fragment for either module 2 or module 17 to create KNL1²⁻₂⁻₂⁻ or KNL1²⁻₁₇⁻₁₇⁻⁻⁻⁻, respectively (Fig. 3 C; Fig. 5 A). We chose module 17 because its sequence adheres closely to the “consensus” TΩ-MELT module sequence (TILYS CGQDD MEITRSHTTAL), and module 2 was chosen because its sequence deviates from that consensus...
Nematode to kinetochores (Fig. 6B). The ability of KNL1 to recruit together ensure recruitment of sufficient amounts of BUB proteins to kinetochores and incomplete restoration of centromeric pH2A-Ti120 (Fig. 5, B–E; Fig. S5A). We therefore conclude that neither chromosome orientation nor the SAC relies on any specific TΩ-MELT module but that both processes require any combination of modules that can recruit sufficient BUB1. We thus propose that different TΩ-MELT modules have redundant functions and that any array of functional modules that can recruit sufficient BUB1 will promote high fidelity chromosome segregation.

Extensive divergence in sequence and amount of repeat modules in eukaryotic KNL1 homologues

Our findings suggest that human KNL1 has evolved by extensive duplications of the TΩ-MELT modules, possibly followed by degeneration of a number of these sequences. Furthermore, our recent analysis of selected eukaryotic KNL1 homologues (Vleugel et al., 2012) showed that the amount of MELT-like sequences varies quite extensively from species to species. To examine if repeating modules exist in these and other KNL1-like sequences, we applied MEME on predicted KNL1 homologues from 15 species across three supergroups of eukaryotic evolution (Fig. 6A). Predicted homologues were identified by similarity in the C-terminal coiled-coil region and homology was further strengthened by the presence of an N-terminal PPI-binding RVSF motif. Interestingly, all homologues contained repeating modules, but they diverged extensively in sequence and number. The methionine of the MELT motif is conserved in most species, but the “LT” sequence is often replaced by additional negative charges. A striking example of this are the drosophilids in which the repeating module is based around a MEED-like sequence (Fig. 6A). (Schittenhelm et al., 2009). TΩ-like sequences were apparent in KNL1 homologues of Branchiostoma floridae and Crassostrea gigas, but MELT-like sequences of most other organisms were complemented with different motifs. In some species (Nematostella vectensis, Thecamonas trahens), KNL1 homologues contained two different types of repeating modules. We conclude that KNL1 is a rapidly evolving protein, with extensive variations in the number and sequence of repeating modules across different eukaryotic KNL1 homologues.

Discussion

An extensive array of generic BUB recruitment modules in KNL1

Our data demonstrate that KNL1 is a scaffold that contains multiple independent and redundant repeating modules, which together ensure recruitment of sufficient amounts of BUB proteins to kinetochores (Fig. 6B). The ability of KNL1 to recruit BUB proteins and ensure efficient chromosome alignment is independent of protein length, of localization of the recruitment modules within KNL1, and of any particular module, per se: KNL1 function is maintained when only two copies of modules 12-13-14 or six copies of module 17 are present. Moreover, compared with the SAC, more modules seem required for chromosome alignment, and the efficiency of chromosome alignment directly follows the amount of functional modules present in KNL1, suggesting that the modules act in an additive fashion (Fig. 6B).

Mutational analysis of the N-terminal module shows that the TΩ motif that we identified as part of the repeating module is critical for BUB recruitment. Previous structural work has shown direct interactions between the TPR domain of BUB1 and the TΩF sequence in the KI1 motif of KNL1 (Krenn et al., 2012). Considering that there is only one potential TxxF interaction groove within the TPR domain of BUB1, we hypothesize that one functional TΩ-MELT module is capable of recruiting one BUB1 molecule. The contribution of the MELT-like sequences was recently described, and involves the BUB1-interacting protein BUB3 (Primorac et al., 2013).

Unlike BUB1, all LacO-targeted KNL1 fragments except for KNL130-261 failed to recruit BUBR1. This may be related to a difference by which the BUBs interact with KNL1. Whereas the TΩ motif in KI1 is critical for interaction with BUB1, a similarly positioned FxxF motif in KI2 is critical for interaction with BUBR1, and neither motif can substitute for loss of the other. The repeating modules present in the KNL1 fragments all contain TΩ motifs or variants thereof, but never an aromatic residue in the T position. Interestingly, however, a KNL1 fragment that was unable to recruit BUBR1 to LacO arrays was able to recruit BUBR1 to kinetochores. In fact, KNL13-M1-M1 restored BUBR1 kinetochore levels to the same extent as KNL1-FL. BUBR1 binding to KNL1 under these conditions is therefore likely indirect and requires one or more kinetochore-localized proteins or activities. Because BUB1 is normally indispensable for BUBR1 localization (Johnson et al., 2004; Klebig et al., 2009) and KI2 is not (this study), and because mutations in the TΩ-MELT motifs abolished BUBR1 localization, we hypothesize that the predominant mode of BUBR1 kinetochore binding is indirect via TΩ-MELT-mediated KNL1–BUB1 interaction, aided by an unidentified kinetochore-localized activity.

In contrast to the TΩ-MELT modules, the role of the N-terminal KI1 and KI2 modules in KNL1 function is unclear. Our recent bioinformatics analysis has indicated that the KI motifs are a recent invention of the vertebrate lineage (Vleugel et al., 2012). Furthermore, the interaction of KI1 with the TPR domain of BUB1 is dispensable for BUB1 recruitment to kinetochores (Krenn et al., 2012), and we show here that in the context of the full-length protein and with our assays, KI1 and KI2 are not required for SAC activity, chromosome alignment, and mitotic progression. These observations raise the question of what the functionality of the KI motifs is. Both within the N-terminal module and the synthetic KNL13-A1-AM-KI1-KI2 construct, the KI motifs enhance BUB recruitment potential of the TΩ-MELT motifs to levels that support SAC activity. It is therefore likely that the KI motifs contribute to some extent to the BUB recruitment ability of full-length KNL1. This may become beneficial under conditions that require maximal BUB levels at kinetochores.
Figure 6. TΩ-MELT module evolution and model. (A) Schematic representation of eukaryotic tree of life showing KNL1 homologues from indicated species. Repeating units are shown in blue and red with the number of repeats in corresponding colors. Repeat sequences are shown as sequence logos. (B) Model for TΩ-MELT function in human KNL1. Conserved (dark blue) and degenerated (light blue) TΩ-MELT modules (essential amino acids in red) in KNL1 can independently recruit BUB protein complexes (BUBs) to promote H2A-Thr120 phosphorylation and SAC activity (few modules, low BUB levels) and chromosome biorientation (increasing fidelity with increasing modules and BUB levels).
and KNL1-M encode full-length, N-terminally LAP-tagged, and siRNA-resistant wild-type KNL1 (modified codons 258 and 259) and was created by digestion of pEYF-LAP-KNL1(1-1228) (a gift from I. Cheeseman, Whitehead Institute, Cambridge, MA) with Xhol and Hpal to isolate the full-length KNL1 cassette, which was ligated into the Xhol and Pmel sites of pCDNA5/FRT/TO (Invitrogen). An N-terminal LAP-tag was introduced by subcloning the LAP-tag cassette from pCDNA3-LAP-MPS1(1-200) (Nijenhuis et al., 2013) into the KpnI and Xhol sites of the resulting plasmid. KNL1-NC was generated by PCR and subcloning of KNL1-C (aa 1833–2342, using Xho1–Xho1) into the KpnI and XhoI sites of the resulting plasmid. KNL1-NC was generated by PCR and cloned into pLacI-LAP. MELT-block aa 818–1051 and aa 1052–1228 and corresponding variants were synthesized by GenScript and cloned into the XhoI site of pCDNA5-LAP-KNL1. Plasmids were introduced by electroporation into HeLa cells.

Materials and methods

Plasmids

pCDNA5-LAP-KNL1 encodes full-length, N-terminally LAP-tagged, and siRNA-resistant wild-type KNL1 (modified codons 258 and 259) and was created by digestion of pEYF-LAP-KNL1(1-1228) (a gift from I. Cheeseman, Whitehead Institute, Cambridge, MA) with Xhol and Hpal to isolate the full-length KNL1 cassette, which was ligated into the Xhol and Pmel sites of pCDNA5/FRT/TO (Invitrogen). An N-terminal LAP-tag was introduced by subcloning the LAP-tag cassette from pCDNA3-LAP-MPS1(1-200) (Nijenhuis et al., 2013) into the KpnI and Xhol sites of the resulting plasmid. KNL1-NC was generated by PCR and subcloning of KNL1-C (aa 1833–2342, using Xho1–Xho1) into the KpnI and XhoI sites of the resulting plasmid. KNL1-NC was generated by PCR and cloned into pLacI-LAP. MELT-block aa 818–1051 and corresponding variants were synthesized by GenScript and cloned into the XhoI site of pCDNA5-LAP-KNL1. Plasmids were introduced by electroporation into HeLa cells.

Cell culture and transfection

U2OS LaC0 cells (a gift from S. Janicki, The Wistar Institute, Philadelphia, PA) were grown in DMEM supplemented with 8% FBS (Takara Bio Inc.), 200 µg/ml hygromycin, 50 µg/ml penicillin/streptomycin, and 2 mM L-glutamine. HeLa Flp-in cells were grown in 8% Tet-approved FBS (Takara Bio Inc.) supplemented with 200 µg/ml hygromycin and 4 µg/ml blasticidin. Plasmids were transfected using FuGENE HD (Roche) according to the manufacturer’s instructions. To generate stably integrated HeLa Flp-In cells, pCDNA5 constructs were cotransfected with Ogg44 recombination cassette in a 1:10 ratio (Klebig et al., 2009). Constructs were expressed by addition of 1 µg/ml doxycycline for 24 h. siKNL1 (CASC5#5, J015673-05, Thermo Fisher Scientific; 5′-CAUAGUAUUCUACGAAUAGUA-3′) and siBUB1 (5′-GAUUGUAACGCUACGAA-3′) were transfected using HiPerFect (QIAGEN) at 20 nM for 2 d according to the manufacturer’s instructions.

Live-cell imaging

For live-cell imaging experiments, cells were transfected with 20 nM siRNA for 24 h, after which cells were arrested in early S-phase for 24 h by addition of 2 mM thymidine, and expression was induced by addition of 1 µg/ml doxycycline. Subsequently, cells were released from thymidine for 8–10 h.
and arrested in prometaphase by the addition of 830 nM nocodazole with or without 250 nM reversion. Unperturbed mitotic progression was assayed after a 24-h infection with BacMam-H2B-GFP virus (BioTek) followed by a release from thymidine into normal media. Cells were imaged in a heated chamber (37°C and 5% CO2) using a 20x/0.5 NA UPL Plan S Apochromat objective on a microscope (model IX-81; Olympus) controlled by CellM software (Olympus). Images were acquired using a CCD camera (ORCA-ER; Hamamatsu Photonics) and processed using CellM software.

Immunofluorescence and antibodies

Asynchronously growing cells were arrested in prometaphase by the addition of 830 nM nocodazole for 2–3 h. Cells plated on 12-mm cover slips were fixed (with 3.7% paraformaldehyde, 0.1% Triton X-100, 100 nM Pipes, pH 6.8, 1 mM MgCl2, and 5 mM EGTA) for 5–10 min. Cover slips were washed with PBS and blocked with 3% BSA in PBS for 1 h, incubated with primary antibodies for 16 h at 4°C, washed with PBS containing 0.1% Triton X-100, and incubated with secondary antibodies for an additional hour at room temperature. Cover slips were then washed, incubated with DAPI for 2 min, and mounted using ProLong Antifade (Molecular Probes). All images were acquired on a deconvolution system (DeltaVision RT, Applied Precision) with a 100x/1.40 NA U Plan S Apochromat objective (Olympus) using softWoRx software (Applied Precision). Images are maximum intensity projections of deconvolved stacks. For quantification of immunostainings, all images of similarly stained experiments were acquired with identical illumination settings; cells expressing comparable levels of exogenous protein were selected for analysis and analyzed using ImageJ (National Institutes of Health). An image macro was used to threshold and select all centromeres and all chromosome areas (excluding centromeres) using the DAPI and anticentromere antibody channels as described previously (Saurin et al., 2011). This was used to calculate the relative mean kinetochore intensity of various proteins ([centromeres–chromosome arm intensity [test protein]]/[centromeres–chromosome arm intensity [CREST]]).

Cells were stained using GFP-booster (ChromoTek), BUB1 (Bethyl Laboratories, Inc.), BUBR1 (Bethyl Laboratories, Inc.), H2A45T210 (Active Motif), MPS1 (EMD Millipore), Mad1 [a gift from A. Musacchio, MPI, Dortmund, Germany], CREST/anti-centromere antibodies (Cortex Biochem, Inc.), and/or tubulin (Sigma-Aldrich). Secondary antibodies were goat anti–human Alexa Fluor 647 and goat anti–rabbit and anti–mouse Alexa Fluor 568 (Molecular Probes) for immunofluorescence experiments.

SILAC mass spectrometry

For SILAC mass spectrometry, LAP–KMN1-FL and -NC cells were adapt to light (C14N14 lysine/arginine) and heavy (C13N13 lysine/arginine) medium, respectively. Cells were synchronized in mitosis by a 24-h thymidine block, followed by overnight treatment with nocodazole. KMN1 expression was induced for 24 h using doxycycline and cells were harvested followed by immunoprecipitation and mass spectrometry. Cells were lysed at 4°C in hypotonic lysis buffer [500 mM NaCl, 50 mM Tris-HCl, pH 7.6, 0.1% sodium deoxycholate, and 1 mM DTT] containing phosphatase inhibitors [1 mM sodium orthovanadate, 5 mM sodium fluoride, and 1 mM β-glycerophosphate], sonicated, and LK–KMN1 proteins were coupled to GFP-trap (ChromoTek) for 1 h at 4°C. Purifications were washed with high-salt (2 M urea, 50 mM Tris-HCl, pH 7.6, 5 mM DTT and low-salt wash buffers [50 mM NaCl, 50 mM Tris-HCl, pH 7.6, and 1 mM DTT]) and subsequently eluted in 2 M urea, 50 mM Tris-HCl, pH 7.6, and 5 mM IAA. Samples were loaded on a 12% column and run on a nano-LC system coupled to a mass spectrometer (LTQ-Orbitrap Velos; Thermo Fisher Scientific) via a nanoscale LC interface (Thermo Fisher Scientific), as described in Suikerbuijk et al. (2012a).

Repeat identification

For all KMN1 orthologues used in this study, separate MEME (Bailey et al., 2009) analyses (option “any number of repeats”) were performed to detect repeating motifs for which HHM MR3 (Eddy, 2011) profiles were created. Significant motifs were added to the profiles and searches were repeated until no novel repeats were found. Searches were manually inspected for consistency and significance; clear false-positives were discarded. The resulting repeats were aligned by hand and the alignment was used to construct sequence logos using Weblogo, which is embedded in the MEME package. Due to the degenerate nature for some the repeats, we introduced multiple gaps in the alignments. Therefore the sequence logos do not fully reflect the true spacing for the conserved amino acid positions within the repeats.

Online supplemental material

Figs. S1–S5 are related to Figs. 1–5. Fig. S1 shows a quantification of the LacO-targeted KMN1 fragments, a schematic of the KMN1-NC, comparative mass spectrometry data of KMN1-FL vs. KMN1-NC, and MPS1 and MAD1 kinetochore localization (and quantification thereof) in cells expressing the different KMN1 constructs. Fig. S2 shows representative still images of checkpoint assays, quantification of checkpoint assays without sensitization and in cells expressing KMN1-NC mutants, unperturbed metaphase–anaphase timing, representative still images of unperturbed mitosis for the different KMN1 constructs, and immunofluorescence of BUB1 localization (sensitized), mitotic progression, alignment, and checkpoint assays of KI mutant KMN1 constructs. Fig. S3 shows BUB1 recruitment to indicated LacO-targeted KMN1 fragments and quantification of BUB1 and BUBR1 recruitment to these loci, an overview of the described M1 mutations and a quantification of BUB1 recruitment to LacO-targeted M1 blocks, and immunofluorescence and quantification of LacKMN1-N-containing T2 mutations. Fig. S4 shows immunofluorescence and quantification of BUB1 recruitment to KMN1-M2–M3 and immunofluorescence and quantification of pH2A-Thr120 and BUB1 kinetochore localization in KMN1-M2–AMAM and BUB1 in KMN1-M1–AM-AK12 cells. Fig. S5 shows immunofluorescence of BUB1 and pH2A-Thr120 kinetochore localization in KMN1-M2–M3 and KMN1-17p–17s. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201307016/DC1.

We thank I. Cheeseman, S. Taylor, and S. Janicki for providing reagents; A. Musacchio and J. Nilsson for sharing unpublished observations; A. Schram for critical reading of the manuscript; and the Kops and Labs laboratories for discussions.

This work was supported by grants from the Netherlands Organization for Scientific Research (NWO-Vo (O16.130.66.1)), from the European Research Council (ERC-StG KINSIGN), and from KWF Kankerbestrijding (JU-2012-5427) to G.J.P. Kops.

Submitted: 2 July 2013
Accepted: 29 October 2013

References

