Human pregnancy zone protein stabilizes misfolded proteins including preeclampsia- and Alzheimer’s-associated amyloid beta peptide

Jordan H. Cate,a,b Janet R. Kumita,c Rafaæ Zeineddine Abdallah,a,b Guomao Zhao,d,1 Ana Bernardo-Gancedo,2 Amanda Henry,e,f,g Wendy Winata,h Mengna Chi,a,b,2 Brin S. F. Grenyer,h Michelle L. Townsend,h Marie Ranson,a,b Catalin S. Buhimschi,1,1 D. Stephen Charnock-Jones,k,l Christopher M. Dobsonq, Mark R. Wilsona,b,3
Irina A. Buhimschi,d,m,n,1 and Amy R. Wyatt,a,b,o,3

*Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; 3School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; 4Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom; 5Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205; 6School of Women’s and Children’s Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia; 7The George Institute for Global Health, University of New South Wales, Sydney, NSW 2052, Australia; 8Women’s and Children’s Hospital, St. George Hospital, Kogarah, NSW 2217, Australia; 3School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia; 9Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210; 10National Institute for Health Research, Cambridge Biomedical Research Centre, CB2 0QQ Cambridge, United Kingdom; 11Department of Obstetrics and Gynaecology, University of Cambridge, CB2 0SW Cambridge, United Kingdom; 12Centre for Trophoblast Research, University of Cambridge, CB2 QQQ Cambridge, United Kingdom; 13Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210; 14Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210; and 15College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia

Edited by F. Ulrich Hartl, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved February 6, 2019 (received for review October 10, 2018)

Protein misfolding underlies the pathology of a large number of human disorders, many of which are age-related. An exception to this is preeclampsia, a leading cause of pregnancy-associated morbidity and mortality in which misfolded proteins accumulate in body fluids and the placenta. We demonstrate that pregnancy zone protein (PZP), which is dramatically elevated in maternal plasma during pregnancy, efficiently inhibits in vitro the aggregation of misfolded proteins, including the amyloid beta peptide (Aβ) that is implicated in preeclampsia as well as with Alzheimer’s disease. The mechanism by which this inhibition occurs involves the formation of stable complexes between PZP and monomeric Aβ or small soluble Aβ oligomers formed early in the aggregation pathway. The chaperone activity of PZP is more efficient than that of the closely related protein alpha-2-macroglobulin (α2M), although the chaperone activity of α2M is enhanced by inducing its dissociation into PZP-like dimers. By immunohistochemistry analysis, PZP is found primarily in extracellular trophoblasts in the placenta. In severe preeclampsia, PZP-positive extracellular trophoblasts are adjacent to extracellular plaques containing Aβ, but PZP is not abundant within extracellular plaques. Our data support the conclusion that the up-regulation of PZP during pregnancy represents a major maternal adaptation that helps to maintain extracellular proteostasis during gestation in humans. We propose that overwhelming or disrupting the chaperone function of PZP could underlie the accumulation of misfolded proteins in vivo. Attempts to characterize extracellular proteostasis in pregnancy will potentially have broad-reaching significance for understanding disease-related protein misfolding.

Significance

Pregnancy is a unique physiological state involving biological stresses that promote protein damage (misfolding) within the maternal body. Currently, little is known regarding how the maternal body copes with elevated protein misfolding in pregnancy. This is important, because the accumulation of misfolded proteins underlies many human disorders, including preeclampsia, a serious complication of pregnancy. In this study, we show that pregnancy zone protein (PZP) efficiently inhibits the aggregation of misfolded proteins, including the amyloid beta peptide, which forms plaques in preeclampsia and in Alzheimer’s disease. We propose that up-regulation of PZP is a major maternal adaptation that helps to maintain protein homeostasis during pregnancy. Moreover, pregnancy-independent up-regulation of PZP indicates that its chaperone function could be broadly important in humans.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1Present address: Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612.

2Present addresses: School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia and Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.

3To whom correspondence should be addressed. Email: amy.wyatt@flinders.edu.au.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817298116/-/DCSupplemental.

Published online March 8, 2019.
Aberrant accumulation of misfolded proteins in extracellular fluids underlies the pathology of a large number of age-related disorders, including Alzheimer's disease, macular degeneration, arthritis, and atherosclerosis (7). Aside from these age-related disorders, misfolded proteins have been shown to accumulate in the urine, serum, and the placenta of women with preeclampsia (8–12), a leading cause of pregnancy-related morbidity and mortality. The broad spectrum of disorders known to involve protein misfolding highlights the fact that proteins are vulnerable to misfolding as a consequence of genetic and environmental changes (13), including pressures that occur as a normal part of pregnancy in mammals. A collapse in the proteostasis network is recognized as a key event associated with aging and ultimately death (14). Intuitively, to cope with pregnancy-associated physiological stresses, the functions of the pregnancy-associated proteostasis network will be critically important.

A small number of normally secreted proteins including clusterin, haptoglobin, and alpha-2-macroglobulin (α2M) have been shown to stabilize and inhibit the aggregation of misfolded proteins (reviewed in ref. 15). Collectively, these proteins are known as extracellular chaperones. Levels of known extracellular chaperones do not increase significantly in maternal blood during normal healthy pregnancy (16–19). Therefore, it is conceivable that one or more pregnancy-associated proteins, which are up-regulated during gestation, play a major role in stabilizing misfolded proteins. Of the numerous changes that occur in the maternal plasma proteome during pregnancy, one of the most dramatic is the increase in pregnancy zone protein (PZP) levels. The concentration of PZP in human blood plasma is normally <0.03 mg/mL, but by 30 wk of gestation PZP levels can reach up to 1.5 to 3 mg/mL in some individuals (20). It is currently unclear why the body makes this tremendous investment in the regulation of PZP in pregnancy when levels of α2M, a closely related α-macroglobulin (αM) family member, are constitutively high in human blood plasma (~1.5 to 2 mg/mL (21)).

In humans, α2M (a tetramer) and PZP (a dimer) share 71% sequence homology (22), and are historically best known as protease inhibitors. However, compared with α2M, PZP is relatively inefficient at performing this activity, and PZP–protease interactions have only been described for a restricted number of protease substrates in vitro (23–27). In more recent years, the multifunctional nature of α2M has become apparent (reviewed in ref. 28). For example, reaction of α2M with hypochlorite, an oxidant that is produced during inflammation, induces the dissociation of the native α2M tetramer into dimers (29, 30). The hypochlorite-induced dissociation of α2M into dimers results in a loss of the protease-trapping activity of α2M (30) but a potent activation of its chaperone activity (29). Compared with the native α2M tetramer, α2M dimers preferentially bind not only to misfolded proteins but also to a variety of other ligands, including signaling molecules (29, 31, 32). Given that PZP is normally a dimer in biological fluids, we hypothesized that PZP could be an efficient chaperone that stabilizes misfolded proteins in a manner similar to dimeric α2M. In the present study, we examined the effect of purified PZP on the fibrillar aggregation of the Aβ peptide associated with Alzheimer’s disease, which has also been implicated in pathological changes occurring in the placenta in preeclampsia (8). To increase the physiological relevance of our studies, we investigated the aggregation propensity of proteins in pregnancy plasma in situ and determined the localization of PZP in placental tissue from women with preeclampsia and of control women matched by gestational age.

Results

Pregnant Women with Low PZP Levels Do Not Compensate by Up-Regulating α2M. PZP was purified from pooled human pregnancy plasma as described previously (33). When analyzed by native Western blotting, purified PZP migrated to the same position as PZP in heparin-treated human pregnancy plasma (Fig. L4). This was important to assess, because purified PZP has a tendency to aggregate during extended storage, a process that has functional consequences (34). The polyclonal anti-PZP antibody used in these experiments did not react with highly purified α2M, verifying its specificity for PZP (Fig. L4). By native gel analysis, the migration of purified PZP was faster than that of native and transformed α2M (α2M+; a compact tetrameric form generated by reaction of the α2M thioester bond) but comparable to that of hypochlorite-liberated α2M dimers (Fig. L1B). The latter migrated in a more diffuse manner compared with PZP, consistent with a heterogeneous population of species differing slightly in physical properties that are present in the hypochlorite-modified α2M preparation (29). The results of native Western blot analyses indicated that there was marked variation in plasma levels of PZP between individuals matched for gestational age (36 wk), while plasma levels of α2M were comparatively similar in all of the samples examined (Fig. L1C). Densitometric analysis of α2M and PZP (collectively referred to as αM) in pregnancy plasma indicated that there is only a weak correlation between PZP and αM levels ($R^2 = 0.2236$) (Fig. L1D). The latter result supports the conclusion that individuals with low PZP in pregnancy do not compensate by up-regulating α2M.

PZP Inhibits Aβ42 Amyloid Formation More Efficiently than Native α2M. The ability of purified PZP to inhibit the fibrillar aggregation of the 42-residue isoform of the Aβ peptide (Aβ42) was assessed using the well-established thioflavin T (ThT) assay. Under the conditions used, Aβ42 aggregated over a period of ~10 h following a short lag phase of ~1 h (Fig. 24). Coincubation of Aβ42 with PZP both extended the lag phase and reduced the rate of fibril formation in a dose-dependent manner (Fig. 24). Compared with the native α2M tetramer, PZP more efficiently inhibited the ThT fluorescence associated with the formation of amyloid fibrils of Aβ1–42, except at the lowest ratio of αM to Aβ1–42 tested (i.e., 1 molecule of αM or PZP to 80 molecules of Aβ1–42) (Fig. 24). In the latter case, both native αM and PZP reduced the initial rate of fibril formation but did not significantly reduce the overall ThT fluorescence at the conclusion of the assay. Consistent with our previous report (29), αM dimers (generated by pretreatment with hypochlorite and purified by size-exclusion...
chromatography) inhibited Aβ1-42-associated ThT fluorescence far more efficiently than the native αM tetramer in all experiments (Fig. 2A). Comparatively, the effect of PZP was less than that of the hypochlorite-modified αM dimer preparation, except for the highest ratio of αM to Aβ1-42 tested (i.e., 1 molecule of PZP per αM dimer to 20 molecules of Aβ1-42), when the two dimeric proteins had similar effects. The results of a bisANS analysis of dimer preparations as described in A. The data are the mean bisANS fluorescence (excitation, 360 ± 10 nm; emission, 490 ± 10 nm) of replicate samples ±SEM and are corrected for background fluorescence. * denotes significantly higher bisANS fluorescence of PZP compared with native αM (Tukey HSD, P < 0.01), and ** denotes significantly higher bisANS fluorescence of dimeric αM compared with native αM and PZP (Tukey HSD, P < 0.01). (C) The effects of native αM and PZP on amyloid formation were examined using an αM subunit-to-Aβ1-42 ratio of 1:20; under these conditions the masses of αM and PZP used in the assay are equivalent. The results shown are the average ThT fluorescence (AFUs) of triplicate samples and are representative of three independent experiments. Error bars are the SEM. The symbol * denotes significantly reduced ThT fluorescence compared with Aβ1-42 alone and corresponding samples coincubated with native αM as assessed at the end of the assay (Tukey HSD, P < 0.05). (B) Corresponding bisANS analysis of αM preparations as described in A. The data are the mean bisANS fluorescence (excitation, 360 ± 10 nm; emission, 490 ± 10 nm) of replicate samples ±SEM and are corrected for background fluorescence. * denotes significantly higher bisANS fluorescence of PZP compared with native αM (Tukey HSD, P < 0.01), and ** denotes significantly higher bisANS fluorescence of dimeric αM compared with native αM and PZP (Tukey HSD, P < 0.01). (C) The effects of native αM and PZP on amyloid formation were examined using an αM subunit-to-Aβ1-42 ratio of 1:20; under these conditions the masses of αM and PZP used in the assay are equivalent. The results shown are the average ThT fluorescence (AFUs) of triplicate samples and are representative of three independent experiments. Error bars are the SEM. The symbol * denotes significantly reduced ThT fluorescence compared with Aβ1-42 alone and corresponding samples coincubated with native αM as assessed at the end of the assay (Tukey HSD, P < 0.05).

Fig. 2. Effects of the αM tetramer, αM dimer, and PZP on the aggregation of Aβ1-42 as assessed by ThT assay. (A) Aβ1-42 (5 μM) was incubated with 25 μM ThT in PBS at 32 °C with constant shaking. Aβ1-42 was also coincubated with either native αM, PZP, or SEC-purified αM dimer at molar ratios of (i) 1:80, (ii) 1:40, or (iii) 1:20 (αM to Aβ1-42) under the same conditions. The results shown are the average ThT fluorescence (excitation, 440 nm; emission, 480 nm; n = 4 ± SEM) in arbitrary fluorescence units (AFUs), and are representative of three independent experiments. The symbol * denotes significantly reduced ThT fluorescence compared with Aβ1-42 alone and corresponding samples coincubated with native αM as assessed at the end of the assay [Tukey honest significant difference (HSD), P < 0.05], and ** denotes significantly reduced ThT fluorescence compared with Aβ1-42 alone as assessed at the end of the assay (Tukey HSD, P < 0.05). (B) Corresponding bisANS analysis of αM preparations as described in A. The data are the mean bisANS fluorescence (excitation, 360 ± 10 nm; emission, 490 ± 10 nm) of replicate samples ±SEM and are corrected for background fluorescence. * denotes significantly higher bisANS fluorescence of PZP compared with native αM (Tukey HSD, P < 0.01), and ** denotes significantly higher bisANS fluorescence of dimeric αM compared with native αM and PZP (Tukey HSD, P < 0.01). (C) The effects of native αM and PZP on amyloid formation were examined using an αM subunit-to-Aβ1-42 ratio of 1:20; under these conditions the masses of αM and PZP used in the assay are equivalent. The results shown are the average ThT fluorescence (AFUs) of triplicate samples and are representative of three independent experiments. Error bars are the SEM. The symbol * denotes significantly reduced ThT fluorescence compared with Aβ1-42 alone and corresponding samples coincubated with native αM as assessed at the end of the assay (Tukey HSD, P < 0.05).

Fig. 3. TEM images of Aβ1-42 after coincubation with αM tetramer, αM dimer, or PZP, and corresponding measurements of soluble Aβ1-42. (A) Aβ1-42 (5 μM) was incubated ± native αM, PZP, or SEC-purified αM dimer at a molar ratio of 1:20 (αM to Aβ1-42) at 32 °C with constant shaking for ~15 h. Samples of the protein solutions were snap-frozen in liquid nitrogen before analysis by TEM. (Scale bars, 100 nm.) (B) After incubation as described in A, insoluble Aβ1-42 was removed by centrifugation (21,000 × g) and soluble Aβ1-42 was quantified by densitometry following Western blot analysis (n = 3 ± SEM). The density of soluble Aβ1-42 in samples containing dimeric αMs (gray) is presented relative to soluble Aβ1-42 in samples containing native tetrameric αM (black). N.D., not detected; N.S., not significantly different (Tukey honest significant difference; P > 0.05).
PZP Forms Stable Complexes with \(\alpha_2 \)M. We have previously reported that monomeric \(\alpha_2 \)M tetramer and/or small soluble species formed early in the aggregation pathway bind to hypochlorite-modified \(\alpha_2 \)M but do not bind to the native \(\alpha_2 \)M tetramer in vitro (29). Consistent with this report, when Hilyte-labeled \(\alpha_2 \)M was co-incubated with native \(\alpha_2 \)M and then subjected to native gel electrophoresis, negligible comigration of labeled \(\alpha_2 \)M tetramer was detected (Fig. 4A). In contrast, when Hilyte-labeled \(\alpha_2 \)M was co-incubated with either hypochlorite-modified \(\alpha_2 \)M or PZP, significant levels of labeled \(\alpha_2 \)M tetramer were detected.

Fig. 4. \(\alpha_2 \)M-\(\alpha_2 \) tetramer complexes detected by native PAGE and biotin-streptavidin pull-down assay. (A, i) Fluorescence image of a native gel showing the migration of Hilyte Fluor 488-labeled \(\alpha_2 \)M tetramer after incubation alone or with \(\alpha_2 \)M at a 1:10 molar ratio of \(\alpha_2 \)M: \(\alpha_2 \)M ox and \(\alpha_2 \)M ox2 denote \(\alpha_2 \)M pretreated with 25 and 100 \(\mu \)M NaOCl, respectively, followed by dialysis to remove unreacted NaOCl. All samples were incubated for 30 min at ambient room temperature. (A, ii) Following fluorescence imaging, the gel was stained with Instant Blue and reimagined to determine the position of all proteins. (B) Image of a Western blot detecting PZP recovered by biotin-streptavidin pull-down assay after incubation in the presence (+) or absence (−) of biotinylated \(\alpha_2 \)M for 30 min at room temperature. Samples were incubated at a molar ratio of PZP: \(\alpha_2 \)M 1:10 and were subjected to de-naturing gel electrophoresis under reducing conditions before Western blot analysis. Under these conditions, the PZP dimer migrates as a 180-kDa monomer. The positions of molecular-mass markers (Mr) are shown in kDa.

PZP Inhibits Heat-Induced Protein Aggregation. Considering that the accumulation of misfolded proteins in preeclampsia is not limited to the \(\alpha_2 \)B peptide (8–12), we examined the effect of PZP on the heat-induced aggregation of citrate synthase (CS), a model protein used to form amorphous protein aggregates. Heating of CS at 43 °C induced its aggregation over a period of ~5 h as measured by the absorbance of the solution at 595 nm (i.e., turbidity), and comigration of CS with PZP reduced the level of CS aggregation in a dose-dependent manner (Fig. 5A). At a 1:2.5 molar ratio (PZP to CS), the inhibitory effect of PZP on the aggregation of CS was significantly greater than the comparable effect of native \(\alpha_2 \)M at the conclusion of the assay (Fig. 5A). For clarity, kinetic curves (Fig. 5A, ii) and statistical analysis of endpoint absorbance values (Fig. 5A, ii) are presented separately. To examine the possibility that monomeric \(\alpha_2 \)Ms also stabilize misfolded proteins in vitro, the chaperone activities of native \(\alpha_2 \)M, PZP, and monomeric Escherichia coli \(\alpha_2 \)M (ECAM) were directly compared using heat-denatured creatine phosphokinase (CPK; another commonly used model protein that forms amorphous aggregates). The results of these assays indicate that, like tetrameric \(\alpha_2 \)M, monomeric ECAM is relatively ineffective in suppressing heat-induced CPK aggregation compared with PZP (Fig. 5B). We have previously shown that hypochlorite-modified \(\alpha_2 \)M dimers more efficiently inhibit amorphous protein aggregation compared with the native \(\alpha_2 \)M tetramer (29); the available evidence therefore supports the conclusion that dimeric quaternary structure is important for the chaperone activity of the \(\alpha_2 \)Ms. To verify that purified ECAM did not aberrantly form higher-order assemblies such as dimers or tetramers, a native gel showing the migration of purified ECAM compared with reduced monomeric \(\alpha_2 \)M is provided in SI Appendix, Fig. S2.

Using conditions that are known to induce plasma protein precipitation (37, 38), the aggregation propensities of plasma proteins from preeclamptic women or women experiencing uncomplicated pregnancy (control) were examined in situ. The two types of pooled plasma samples examined were similar in terms of their total protein levels and maternal ages, but the pooled preeclampsia plasma sample contained ~50% less PZP than the control, and the mean gestational ages of the two cohorts differed by several weeks (Table 1). The data show that after 500 h of incubation, the turbidity of the PZP-deficient pooled plasma sample from preeclamptic women had increased significantly, but no significant change was detected in the pooled sample from matched controls (Fig. 5C). Combined together, these results support the conclusion that similar to other extracellular chaperones (15), PZP stabilizes a range of misfolded protein clients, including aggregation-prone peptides and denatured proteins.

Endogenous Proteases Do Not Induce the Formation of Tetrameric PZP in Blood Plasma in Situ. As previously mentioned, demonstration of the protease-trapping action of PZP has currently been limited to studies involving purified protein in vitro (23–27). In the present study, to evaluate the protease-trapping action of purified PZP versus PZP in plasma, the effects of incubation with chymotrypsin were determined. When purified
PZP was coincubated with chymotrypsin (molecular mass 25 kDa), a small amount of PZP was found to form a high-molecular-mass species (Fig. 6A). This result supports a proposed model for protease trapping in which two PZP molecules form a tetrameric complex around the covalently bound protease (23). Interestingly, when human pregnancy plasma was incubated at 37 °C for 45 min and assayed by native Western blot analysis, there was negligible evidence that a similar high-molecular-mass PZP species is formed under these conditions in situ (Fig. 6B, i). Moreover, supplementation of the plasma with 1 μM chymotrypsin had no observable effect on the migration of PZP. In the same plasma samples, native α2M was converted to an electropheretically fast form (similar to α2M*; Fig. 1B), and the effect was greater when the plasma was supplemented with chymotrypsin (Fig. 6B, ii). The latter behavior is consistent with protease trapping by α2M, which causes the α2M tetramer to become compact (24). In contrast to the anti-α2M antibody that was found to bind strongly to protease-bound electropheretically fast α2M (Fig. 6B, ii), the anti-PZP polyclonal antibody used in this study bound preferentially to the native PZP dimer (SI Appendix, Fig. S3). Given that the putative PZP–protease complexes were not detected in situ following the addition of high levels of chymotrypsin (Fig. 6B), densitometry was used to confirm that the levels of native PZP in plasma were not detectably reduced following the addition of chymotrypsin (Fig. 6C).

Discussion

Consistent with the functions of PZP having systemic importance throughout pregnancy, PZP levels are dramatically elevated in blood plasma from an early stage during gestation (20). The latter is a relevant observation, as the accumulation of misfolded proteins is not isolated to the placenta in preeclampsia but has been measured in serum and urine (8, 9, 12). The results of this study demonstrate that PZP stabilizes α2M and other misfolded client proteins more efficiently than the constitutively abundant α2M tetramer, which has received substantial attention for its role as an extracellular chaperone (reviewed in ref. 15). Given the extent to which PZP is up-regulated in mid to late pregnancy, it is conceivable that PZP is a major regulator of extracellular protein misfolding and insolubility in vivo, a paradigm that is critical for the function of PZP in the placenta. We tested this hypothesis using a rabbit model of preterm birth with and without preeclampsia and/or fetal growth restriction (8). To identify if there is potential for PZP to act as a local chaperone in the placenta, we performed immunohistochemical analysis of well-characterized cases of preterm birth with and without preeclampsia and/or fetal growth restriction; relevant clinical information pertaining to these samples is presented in SI Appendix, Table S1. Extravillous trophoblasts (EVTs) in the basal plate, placental septa, and cell islands stained strongly for PZP in all clinical scenarios, but several patterns emerged relative to histological changes in placenta that are commonly associated with preeclampsia (Fig. 7A–C). In the maternal floor of the placenta of idiopathic preterm birth, PZP-positive EVT were seen scattered (Fig. 7A); in preeclampsia, however, they appeared to migrate around avascular villi (Fig. 7B and C), thus contributing to the characteristic “lacy appearance” of confluent placental islands (Fig. 7D) classically described in preeclamptic placentas populated by increased numbers of proliferating migratory EVTs (39, 40). Staining of serial sections supported the notion that these cells also harbor αP (Fig. 7E) as well as cytokeratin-7 (Fig. 7F), thus confirming their trophoblast phenotype.

To determine whether or not PZP colocalizes with αP in insoluble plaques in vivo, we performed double-immunofluorescence studies with a particular focus on confluent placental islands (Fig. 7H–J). EVTs that were stained intensely red for PZP were seen surrounding acellular areas in the vicinity of extracellular green fluorescent αP deposits (Fig. 3H–J) and isolated EVTs, which appeared morphologically necrotic (white arrows). The vicinity between extracellular αP and dying EVTs was better appreciated using confocal imaging (Fig. 7I). Upon z-stack reconstruction, zones of merged yellow fluorescence suggested that a small amount of PZP was codeposited with αP in plaques (Fig. 7L, blue arrows), although it is clear that deposited αP is not predominantly bound to PZP. Further analysis of the intracellular location of PZP and αP is presented in SI Appendix, Fig. S4.

Table 1. Characteristics of plasma samples that were pooled from individuals exhibiting preeclampsia or uncomplicated pregnancy (control)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Preeclampsia</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein, mg/mL</td>
<td>59 ± 1</td>
<td>60 ± 1</td>
</tr>
<tr>
<td>PZP*, mg/mL</td>
<td>0.22 ± 0.004</td>
<td>0.46 ± 0.011</td>
</tr>
<tr>
<td>Maternal age, y</td>
<td>33 ± 6.0</td>
<td>34 ± 3.9</td>
</tr>
<tr>
<td>Gestational age*, wk</td>
<td>33 ± 2.7</td>
<td>28 ± 1.5</td>
</tr>
<tr>
<td>Individual samples pooled, n</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

*Significant difference between the two cohorts (Student’s t test, P < 0.05).
generated from the current study provide an important first step toward understanding how the maternal body adapts to handle the unique challenges to extracellular proteostasis during pregnancy.

The Chaperone Activity of PZP Potentially Influences Pregnancy-Associated and Pregnancy-Independent Protein Misfolding. Interest in the role of αM in Alzheimer’s disease spans several decades, with a number of early genetic studies reporting an association between mutations in αM and the risk of disease (46–49). This association has not, however, been confirmed by more recent genome-wide association studies (reviewed in ref. 50), which suggests that additional factors such as posttranslational modification could be important. Interestingly, elevated levels in serum of αM or PZP are reportedly associated with presymptomatic Alzheimer’s disease in men and women, respectively (51, 52). Furthermore, both αM and PZP are found to be colocalized with Aβ in the brain in Alzheimer’s disease (53, 54). It is not yet known if the elevated levels of PZP measured in women with presymptomatic Alzheimer’s disease are the consequence of a general innate immune system response, since PZP levels are reported to be elevated in several other inflammatory states including rheumatoid arthritis (55), Behçet’s syndrome (56), psoriasis (57, 58), Chagas disease (59), and viral infection (60, 61). Nevertheless, the available data strongly suggest that both αM and PZP are likely to participate in Aβ homeostasis in vivo. It remains to be determined whether or not their roles are overlapping or discrete.

Previous studies have reported that low levels of maternal plasma PZP are associated with spontaneous preterm birth (62) and an increased risk of preeclampsia (63–65). On the other hand, opposing and inconclusive data have also been reported regarding a negative correlation between maternal plasma PZP levels and preeclampsia (66, 67). As such, there is a need to reevaluate this association with greater consideration of both the clinical spectrum of preeclampsia (68) and the accurate quantification of PZP independent of the closely related αM, which even modern proteomic methods have struggled to distinguish from each other (67). Although detailed analysis of the chaperone activity of PZP in pregnancy plasma in situ is outside of the scope of the current study, our results provide an indication that PZP deficiency could contribute to the accumulation of misfolded proteins in preeclampsia. Consistent with this idea, high levels of plasma PZP are associated with pregnancy-associated remission of rheumatoid arthritis (69), a condition exacerbated by the accumulation of damaged proteins in the synovial fluid of inflamed joints (70, 71). However, our inability to assay a large number of samples from individual women with preeclampsia and matched controls is a limitation of this study. Additionally, preeclampsia is a complex multifactorial syndrome, and previously reported immunomodulatory activities (17, 72–74) or currently undescribed functions of PZP that mirror the multifunctional nature of αM could also be important (reviewed in ref. 75).

It has previously been reported that microglia that are immunoreactive for PZP colocalize with Aβ deposits in the brain in Alzheimer’s disease (53). The pathobiological relevance of PZP expression at sites of Aβ deposition, however, remains unclear.
Given that our data demonstrate that PZP is found in extravillous trophoblasts in cell islands adjacent to placental Aβ plaques, there is a need to establish the relative contributions of fetal and maternal plasma PZP to normal placental function, including Aβ homeostasis. The observation that PZP is largely excluded from Aβ plaques in the placenta supports our hypothesis that PZP normally forms soluble complexes with Aβ that are subsequently taken up by cells and cleared. Codereposition of PZP with Aβ in the placenta suggests that this protein might also have currently undescribed intracellular roles (SI Appendix, Fig. S4). Using STRING analysis (76), nuclear importins 7 and 8 are predicted to bind to PZP with medium confidence, although further studies are needed to examine this possibility.

PZP Is Not a Major In Situ Inhibitor of Proteases in Pregnancy Plasma. The emergence of the α2M tetramer from a dimeric precursor appears to have been driven by evolutionary pressures (77). However, it is clear that in many mammals, including humans, dimeric PZP has relevance in pregnancy- and in non–pregnancy-associated inflammatory states. Although α2M and PZP share extensive sequence identity, such identity does not occur in the protease scaffold region (21), which explains why the broad-spectrum protease inhibitory activity of α2M is not shared by PZP. Consistent with the results of several other in vitro studies, the results generated here using human pregnancy plasma in situ support the conclusion that α2M is much more proficient at trapping abundant endogenous plasma proteases compared with PZP (23–25). Given that protease trapping is currently the only biologically relevant mechanism known to expose the LRP1 binding site on PZP (35), it is plausible that this reaction occurs in vivo. If it does occur, however, the identities of the major protease substrates are currently unclear. Proteases from the fibrinolytic and coagulation cascade have been proposed as potential targets of PZP (27), but conflicting results have also been presented (78). When the protease specificity of the PZP bait region is analyzed using the bioinformatics tool PROSPER, cleavage sites are predicted for both metalloproteases matrixmetallopeptidase-2 and -9 and for serine proteases elastase-2 and cathepsin G (79). Limited in vitro data also suggest that metalloproteases and intracellular proteases, including elastase, might be endogenous substrates for PZP (24, 26). On the other hand, given that all of these proposed protease substrates are more efficiently trapped by the α2M tetramer than by the PZP dimer (24, 26), it is difficult to imagine that the up-regulation of PZP in pregnancy is exclusively linked to its protease-trapping function.

Pregnancy-Associated Maternal Adaptations Contribute to Proteostasis. Research into the extracellular quality control of protein folding has primarily been driven by the knowledge that misfolded proteins accumulate in a large number of age-related disorders such as Alzheimer’s disease, arthritis, atherosclerosis, and macular degeneration. The pregnancy-associated syndrome preeclampsia clearly stands apart from these conditions. On the other hand, mature age and pregnancy can both be viewed as life transitions Con A immunostained for (A) PZP, (B) Aβ, (C) CK7, (D) PZP and Aβ, and (E) PZP and α2M. Codeposition of PZP with Aβ in the placenta and in preeclampsia could indicate that the chaperone activity of PZP or receptors responsible for its clearance is overwhelmed or dysfunctional in the syndrome. The pregnancy-associated syndrome pre-
stages that involve chronically elevated physiological stresses that contribute to protein misfolding (2, 14). In addition to the accumulation of misfolded protein aggregates, there are numerous similarities between preeclampsia and many age-related protein-misfolding disorders, including strong inflammatory pathology and vascular dysfunction (80, 81). Furthermore, it has been shown that premature placental aging underlies early-onset preeclampsia (52), and it has been proposed that the placenta is a tractable model for aging human tissue (83). Interestingly, recent data suggest that, after preeclampsia, women have a fourfold increased risk of death from Alzheimer’s disease than the general female population (84). While potentially explained by increased cardiovascular and cerebrovascular disease rates in this group, common pathophysiologies related to protein misfolding might also play a role. Therefore, it is tempting to speculate that a greater understanding of the maternal adaptations for controlling protein misfolding in pregnancy could help us to understand better the phenomenon of age-related protein misfolding and hence to contribute to the development of novel therapeutic strategies.

Materials and Methods
All chemicals and buffer salts were obtained from Sigma-Aldrich, unless otherwise stated.

PZP and α2M Purification from Human Plasma. Heparinized human pregnancy plasma was obtained from donors as approved by either the Cambridgeshire 2 Research Ethics Committee (reference no. 07/H0308/163) or the joint University of Wollongong (UOW) and Illawarra Shoalhaven Local Health District (ISLHD) Health and Medical Human Research Ethics Committee (application nos. 2013/377 and 2016/1016) and stored at ≤−20 °C until use. All participants provided written informed consent. Donated blood samples were deidentified before use in this study as specified in the relevant approved ethics applications. This included donations from women with no known pregnancy complication (control) and women diagnosed with preeclampsia. PZP was subsequently purified from control pregnancy plasma as described in ref. 33.

Native α2M was purified from normal (i.e., nonpregnant) blood plasma without amniotic fluid as described in ref. 85. This collection was approved by the joint UOW and ISLHD Health and Medical Human Research Ethics Committee (application no. HE02/080). Transformed α2M was generated by incubating 1.4 μM native α2M with 400 mM NaHCO₃ in PBS (pH 7.4) overnight at room temperature, followed by extensive dialysis against PBS. Hypochlorite-modified α2M was generated by incubating 0.55 μM α2M with 120 μM NaOCl in PBS overnight at ambient room temperature, followed by extensive dialysis against PBS to remove unconjugated NaOCl. Hypochlorite-modified α2M dimers were purified from residual α2M tetramer via Superose 6 10/300 GL size-exclusion chromatography (SEC).

Electrophoresis and Western Blot Analyses. Proteins were subjected to native gel electrophoresis using NuPAGE Novex 3 to 8% Tris-acetate gels and Novex Tris-glycine native buffers (Life Technologies). Denaturing gel electrophoresis was performed using NuPAGE Novex 4 to 12% Bis-Tris gels and NuPAGE Mes SDS running buffer. Where specified, samples were reduced by treatment with β-mercaptoethanol. Gels were stained using Instant Blue stain (Sigma-Aldrich). In experiments involving Hilyte-labeled Aβ, the migration of the fluorescently labeled peptide was determined using a Typhoon Trio imager (GE Healthcare).

For Western blot analysis, proteins were subjected to electrophoresis as described above and transferred to nitrocellulose or polyvinylidene difluoride (PVDF) membranes. After blocking overnight at 4 °C in skim milk solution (5% [wt/vol] skim milk powder in PBS), the membranes were incubated with the relevant antibodies/streptavidin conjugates diluted in skim milk solution (1 h at 37 °C). Blots were imaged with an Amersham 600 imager (GE Healthcare) using enhanced chemiluminescence. PZP was detected using an affinity-purified polyclonal antibody (GeneTex), α2M was detected using monoclonal antibody 2N1/10 (Bio-Rad) or a polyclonal antibody (Dako), and Aβ was detected using monoclonal antibody W02 supernatant.

Thioflavin T Assays. Aβ1−42 (5 μM; AnaSpec) was incubated at 32 °C with shaking in PBS containing ThT (25 μM) in the presence or absence of native α2M, PZP, or hypochlorite-modified α2M dimer (pretreated using NaOCl and purified from residual tetramers by SEC as described above). The ThT fluorescence of the samples was continuously monitored using a FLUOSTAR OPTIMA plate reader (BMG Labtech) with excitation and emission wavelengths of 440 and 480 nm (slit widths of 10 nm), respectively. At the conclusion of the assay, following brief centrifugation to pellet insoluble material (5 min at 21,000 × g), the relative amount of soluble Aβ1−42 in each sample was measured by subtracting 20 μL of the supernatant to native Western blot analysis and performing densitometry using ImageJ software (NIH). The density of soluble Aβ1−42 in samples containing dimeric α2M is presented relative to soluble Aβ1−42 in samples containing native tetrameric α2M.

4,4-Dianilino-1,1-Biphenylthyl-5,5-Diisoumic Acid Assay. For bisANS analyses, 170 nM native α2M tetramer, native PZP dimer, or hypochlorite-modified α2M dimer was incubated with 10 μM bisANS in PBS for 5 min at ambient room temperature before the fluorescence was measured on a FLUOSTAR OPTIMA plate reader with excitation and emission wavelengths of 360 and 490 nm (slit widths of ±10 nm), respectively. All reported values are corrected for the background fluorescence of bisANS in PBS.

Transmission Electron Microscopy. Aβ1−42 was incubated in the presence or absence of native α2M, PZP, or oxidized α2M dimer as described for ThT assays. The samples were then applied to 400-mesh carbon film copper grids (Agar Scientific) and imaged on an FEI Tecnai G2 transmission electron microscope (CAIC, University of Cambridge). Images were analyzed using the SiS Megaview II Image Capture System (Olympus).

Biotin-Streptavidin Pull-Down Assays. Binding of PZP to commercially prepared biotinylated Aβ1−42 (BAβ1−42; Cambridge Bioscience) was performed following their co-creation at a 1:10 molar ratio of PZP to BAβ1−42 in PBS for 10 min at ambient room temperature. Biotin-streptavidin pull-down assays were performed using Dynabeads My One Streptavidin C1 according to the manufacturer’s instructions (Life Technologies).

Turbidity Assays. CS (1 μM in PBS; Sigma-Aldrich) was incubated in the presence or absence of native PZP or native α2M at 43 °C in a FLUOSTAR OPTIMA plate reader while the absorbance at 595 nm was continuously monitored. For clarity, kinetic curves and analysis of end-point absorbance values are presented in separate charts. In other experiments, CPK (5 μM in PBS; Sigma-Aldrich) was incubated in the presence or absence of ECAM, PZP, or α2M at 55 °C while the absorbance at 595 nm was continuously monitored as described above. Recombinant ECAM was purified as described in ref. 86. The plasmid used for purifying ECAM was a gift from Andréa Dessen, Structural Biology Institute (IBS), Grenoble, France.

Using methods similar to previous studies, we assessed the aggregation of protein in human plasma in situ (37, 38). Briefly, heparinized blood plasma samples from individuals exhibiting uncomplicated pregnancy (n = 6) or preeclampsia (n = 9) were pooled. Total protein was estimated using the bicinchoninic acid (BCA) method. After blocking overnight at 4 °C in skim milk solution, the plasma was supplemented with 0.01% NaN₃ to inhibit microbial growth during the assay. PZP quantification was performed using an R&D Systems ELISA kit according to the manufacturer’s instructions (In Vitro Technologies). Forty 70-μL aliquots of pooled plasma from each cohort were dispensed into a Grierer 384-well plate and incubated at 38 °C for 500 h with periodic agitation in a FLUOSTAR OPTIMA plate reader (BMG Labtech). The absorbance at 595 nm was measured as an indicator of plasma turbidity.

Protease-Trapping Assays. The protease-trapping activity of purified PZP was examined after incubation with chymotrypsin at a 2:1 molar ratio of PZP to chymotrypsin for 30 min at 37 °C by subjecting the proteins to separation in native gel electrophoresis. Under these conditions, protease trapping is detected by the formation of a high-molecular-mass complex consisting of two molecules of PZP and one molecule of protease (23). To examine the ability of PZP to trap proteases in heparinized human pregnancy plasma in situ, plasma was incubated at 37 °C for 45 min in the presence or absence of 1 μM chymotrypsin. An additional sample (not supplemented with chymotrypsin) was held on ice to limit the activity of endogenous plasma protease. Following separation using 3 to 8% Tris-acetate gels, proteins were transferred to PVDF membranes and probed for PZP or α2M (as described in Electrophoresis and Western Blot Analyses).

Placental Immunohistochemistry and Immunofluorescence. We analyzed placentas from women with medically indicated delivery in the context of early-onset severe preeclampsia (n = 11; gestational age (GA) at delivery (mean ± SD): 30 ± 3 wk). Tissues from a group of women with spontaneous
idiopathic preterm birth at a similar gestational age (n = 8; GA: 30 ± 2, P = 0.453) served as the best possible control. All women delivered at Yale-New Haven Hospital and signed informed consent under protocols approved by the Human Investigation Committee of Yale University. Donated tissues were deidentified before use in this study as specified in the relevant approved ethics application. Within minutes of the time of delivery of the placenta, a full-thickness biopsy was retrieved from the central portion of the placenta and fixed in formalin and embedded in paraffin. Five-micrometer serial sections were deparaffinized in xylene and rehydrated with graded ethanol to potassium PBS solution (pH 7.2). Following antigen retrieval with citrate buffer, sections were pretreated with 1% hydrogen peroxide for 15 min followed by incubation for 1 h at room temperature with 5% donkey serum (Jackson ImmunoResearch Laboratories). Sections were then incubated overnight at 4 °C with primary antibodies followed by incubation for 1 h at room temperature with biotinylated donkey anti-rabbit or anti-mouse IgG (1:100; Jackson ImmunoResearch Laboratories) as appropriate. Signal amplification and detection were performed with avidin–biotin (VECTASTAIN Elite ABC; Vector Laboratories) using Vector NovaRed as peroxidase substrate. Sections exposed to nonimmune IgG served as negative control. The following primary antibodies were used: polyclonal anti-PZP (1:100; GeneTex), monoclonal anti-AJ antibodies (clone WO2-Z; Millipore), monoclonal anti-γ-ceratin (7-1:100; Invitrogen), and monoclonal anti-HLA-G (1:100; clone 4H80; Abcam).

To colocalize PZP with AJ, we performed double immunofluorescence on select tissues. After deparaffinization and antigen retrieval with citrate buffer, the slides were blocked with 100 mM glycine followed by 10% goat serum for 1 h at room temperature. Slides were further incubated overnight at 4 °C with the mixture of primary antibodies anti-PZP (1:100) and anti-Abeta (clone WO2; 1:250). Following washing, slides were exposed for 1 h at room temperature to a secondary antibody mixture containing 2 μg/mL goat anti-rabbit IgG conjugated to Alexa Fluor 488 and 2 μg/mL goat anti-rabbit IgG conjugated to Alexa Fluor 594 plus 1 μg/mL DAPI. Slides were mounted with ProLong Gold Antifade medium and images were captured using a Zeiss LSM 700 confocal laser-scanning microscope.

ACKNOWLEDGMENTS. We sincerely thank all of the participants who donated human tissue to this study, and thank Dr. Megan Kelly for assistance with the processing of blood from the Illawarra Born Study. This work was supported by funding from the National Health and Medical Research Council (NHMRC), Australia (APP1099991 awarded to A.R.W.) and the Flinders Foundation (A.R.W.). J.H.C. is supported by an Australian Institute of Nuclear Science and Engineering (AINSE) postdoctoral award and an Australian Postgraduate Award (Commonwealth Government of Australia). Additional funds were from the Faculty of Science, Medicine and Health (A.R.W.), Centre for Medical and Molecular Biosciences (A.R.W., M.R.W., and M.R.), University of Wollongong, and Illawarra Health and Medical Research Institute (B.S.F.G. and M.L.T.). Funding was also received from Eunice Kennedy Shriver National Institute of Child Health and Human Development R01 HD 04732 (to I.A.B.), the Cambridge Centre for Misfolding Diseases (C.M.D., J.R.K., and A.B.-G.), Wellcome Trust Programme Grant 094425/Z/10/Z (to C.M.D. and J.R.K.), and the National Institute for Health Research (NIHR) Cambridge Comprehensive Biomedical Research Centre (D.S.C.-J.). The work of A.H. was supported by an NHMRC Early Career Fellowship (APP1141570).

51. Ijsselstijn L, et al. (2011) Serum levels of pregnancy zone protein are elevated in pregnant women with preeclampsia. Mol Psychiatry 16:937–945.

55. Ijsselstijn L, et al. (2011) Serum levels of pregnancy zone protein are elevated in pregnant women with preeclampsia. Mol Psychiatry 16:937–945.

