Microstructural properties of the vertical occipital fasciculus explain the variability in human stereovision

Hiroki Oishi, Hiromasa Takamura, Shuntaro C. Aoki, Ichiro Fujita, and Kaoru Amano

*Center for Information and Neural Networks (CINet), National Institute of Information and Communications Technology and Osaka University, Suita 565-0871, Japan; and Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan

Stereopsis is a fundamental human visual function that has been studied extensively. However, it is not clear why depth discrimination (stereovision) varies more significantly among people than other modalities. Previous studies have reported the involvement of both dorsal and ventral visual areas in stereovision, implying that not only neural computations in cortical areas but also the anatomical properties of white matter tracts connecting those areas can impact stereovision. Here, we studied how human stereovision relates to white matter properties by combining psychophysical, diffusion MRI (dMRI), and quantitative MRI (qMRI). We performed a psychophysical experiment to measure stereovision and, in the same participants, we analyzed the microstructural properties of visual white matter tracts on the basis of two independent measurements, dMRI (fractional anisotropy, FA) and qMRI (macromolecular tissue volume; MTV). Microstructural properties along the right vertical occipital fasciculus (VOF), a major tract connecting dorsal and ventral visual areas, were highly correlated with measures of stereovision. This result was consistent for both FA and MTV, suggesting that the behavioral-structural relationship reflects differences in neural tissue density, rather than differences in the morphological configuration of fibers. fMRI confirmed that binocular disparity stimuli activated the dorsal and ventral visual regions near VOF endpoints. No other occipital tracts explained the variance in stereovision. In addition, the VOF properties were not associated with differences in performance on a different psychophysical task (contrast detection). These series of experiments suggest that stereoscopic depth discrimination performance is, at least in part, constrained by dorso-ventral communication through the VOF.

Significance

Seeing in the three-dimensional world—stereopsis—is an innate human ability, but it varies substantially among individuals. The neurobiological basis of this variability is not understood. We combined diffusion and quantitative MRI imaging with a psychophysical measurement, and found that variability in stereovision is associated with microstructural differences in the right vertical occipital fasciculus, a white matter tract connecting dorsal and ventral visual cortex. This result suggests that the microstructure of the pathways that support information transmission across dorsal and ventral visual areas plays an important role human stereovision.

Author contributions: H.O., H.T., I.F., and K.A. designed research; H.O. and H.T. performed research; H.T. and S.C.A. contributed new reagents/analytic tools; H.O. and H.T. analyzed data; and H.O., H.T., I.F., and K.A. wrote the paper. The authors declare no conflict of interest. This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The data for reproducing analyses and codes for replicating psychophysical experiments have been deposited on Open Science Framework (available at https://osf.io/qd8cj/).

1H.O. and H.T. contributed equally to this work.

2To whom correspondence should be addressed. Email: hakemur@nict.go.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804741115/-/DCSupplemental.

Published online November 14, 2018.
estimated depth discrimination threshold that corresponded to an 84% correct response rate. We succeeded in estimating the stereoacuity of 14 participants; five participants had <84% correct responses over the full range of tested disparities (±7.68 arcmin), and we were unable to determine stereoacuity from their psychometric functions. However, all participants discriminated depth from RDSs with a longer duration (500 ms) and larger disparities (15.36 arcmin) significantly better than chance, indicating that none were stereoblind (SI Appendix, SI Materials and Methods). We classified participants into good (blue) and poor stereoacuity (green) groups.

Microstructural Properties of VOF Explain Individual Variabilities in Stereoacuity. We collected two independent structural MRI datasets, dMRI and qMRI, from the participants who took part in the psychophysical experiment. We performed tractography on the dMRI dataset to identify the trajectory of major visual white matter tracts (left and right inferior longitudinal fasciculus, ILF; left and right optic radiation, OR; forceps major of the corpus callosum; and left and right VOF) following the anatomical prescriptions in previous studies (SI Appendix, SI Materials and Methods). We evaluated the tissue properties along these visual white matter tracts using the widely used dMRI measure, fractional anisotropy (FA) (28), and recently proposed qMRI measure, macromolecular tissue volume (MTV), which quantifies the nonproton neural tissue density (29).

Finally, we examined how the variation of FA or MTV in these visual white matter tracts correlates with the stereoacuity for each participant (see SI Appendix, Fig. S3 for whole-brain comparison between FA and MTV).

First, we examined white matter tracts that explained the variability in stereoacuity by comparing the performance of multiple linear regression models that predict stereoacuity from the tissue properties (MTV or FA) of the examined tracts. This analysis was performed on data from the 14 participants whose stereoacuity was quantitatively estimated (an analysis using the data of all 19 participants is also presented below). Next, we selected the best linear regression model using the Bayesian information criterion (BIC). BIC model selection for the MTV of visual white matter tracts revealed the best regression model using a single tract, the right VOF (Fig. 2A). This was the significant model for predicting the stereoacuity [$R^2 = 0.36, F_{(1,12)} = 6.71, P = 0.024;

Fig. 1. Psychophysical experiment measuring stereoacuity. (A) Schematic illustration of the depth discrimination task using RDSs (see SI Appendix, Fig. S1A for details). Each RDS was concentric bipartite. Participants were asked to judge whether the central disk was nearer or farther than the surrounding disk. (B) The psychometric functions of three representative participants with different performances. The horizontal axis depicts binocular disparity (arcmin; logarithmic scale), while the vertical axis depicts the correct rate. The performance on the crossed and uncrossed disparities was averaged. Stereoacuity was estimated as the binocular disparity at which a participant achieved 84% correct rate (Left and Middle). Right shows a participant with a performance of <84% over the tested range of disparities; therefore, we could not quantitatively estimate stereoacuity using the identical criteria. (C) The stereoacuity of all participants ($n = 19$). The vertical axis shows the disparity threshold at which performance reached 84% correct. The stereoacuity value is arbitrary for the five participants whose stereoacuity could not be quantitatively estimated (performance < 84%; labeled with diamonds). Note, these five participants were not stereoblind (SI Appendix, SI Materials and Methods). We classified participants into good (blue) and poor stereoacuity (green) groups.

No other models using single, or combinations of, visual tracts were significantly correlated with the stereoacuity (SI Appendix, Table S1). In summary, the microstructural properties of the right VOF best predicted the variability in stereoacuity.

The BIC model selection using FA, a conventional measure of dMRI, provided similar results: The best model to explain variations in human stereoacuity included a single tract, the right VOF [$R^2 = 0.30, F_{(1,12)} = 5.22, P = 0.041;

We further examined how MTV and FA differed between the good stereoacuity (low disparity-threshold) and poor stereoacuity (high disparity-threshold) groups, by incorporating datasets from all participants ($n = 19$), including the five participants whose stereoacuity could not be estimated from the psychophysical function analysis (Fig. 1B). First, we classified participants with quantitative estimates of stereoacuity ($n = 14$) into different subgroups by applying a two-step clustering algorithm to the stereoacuity data and selecting the best clustering based on BIC (SI Appendix, SI Materials and Methods). The analysis revealed two subgroups, which correspond to good ($n = 10$) or poor ($n = 4$) stereoacuity groups. Then the five participants without quantitative estimates of stereoacuity were included in the poor stereoacuity group ($n = 9$ in total, Fig. 1C). We found that the good stereoacuity group had a significantly higher MTV (Fig. 2C; $d^* = 1.27, t_{17} = 2.77, P = 0.015$) and FA (SI Appendix, Fig. S4B; $d^* = 1.14, t_{17} = 2.48; P = 0.024$) along the direction of the right VOF compared with the poor stereoacuity group. These differences in MTV and FA between the two groups were consistent with the results of the regression analysis of the microstructural properties of the right VOF and stereoacuity (Fig. 2B for MTV and SI Appendix, Fig. S4A for FA). We also found a significant group difference in axial diffusivity ($d^* = 1.07, t_{17} = 2.33, P = 0.032$) but not radial diffusivity of the right VOF (SI Appendix, Fig. S5 C and D).

The spatial profile of the tract properties suggested that the group difference was present along the entire length of the right VOF, from dorsal to ventral (Fig. 2C for MTV and SI Appendix, Fig. S4B for FA), and not restricted to a localized region. Thus, it is unlikely that the group difference can be explained by a partial volume effect with other short-range fibers (such as U-fibers). We did not find any significant differences in MTV and FA between the two groups in any other...
visual white matter tracts, such as the ILF or OR in both hemispheres, forceps major, and left VOF (Fig. 2D). Furthermore, it should be noted that the difference in stereoeoacy in these two groups was not accompanied by differences in refractive power or pupillary distance of the eyes (SI Appendix, Fig. S1B) nor age ($d' = 0, t_{17} = 0, P = 1$; 25 ± 5.2 and 25 ± 3.7 y old for good and poor stereoeoacy groups, respectively).

We found significant associations between MTV/FA and stereoeoacy in the right, but not the left, VOF. We evaluated the robustness of the lateralization across different statistical criteria for rejecting VOF streamlines (SI Appendix, Fig. S6A). Although the regression analysis did not reach significance (SI Appendix, Fig. S6B), MTV along the left VOF showed marginally significant difference in relative conservative outlier rejection criteria ($d' = 0.91, t_{17} = 1.99, P = 0.063$; SI Appendix, Fig. S6C). We noted that a significant effect in the right VOF was preserved in the conservative criterion ($d' = 1.20, t_{17} = 2.62, P = 0.018$). These results suggest that a lack of statistical significance in the left VOF may be at least partly explained by the relative difficulty in identifying coherent streamlines.

In the above analysis, we estimated stereoeoacy by pooling data from the left and right visual fields, which helped to improve the reliability of the estimate by increasing the number of trials. Given that the areas connected by VOF have retinotopic representation (26), we also tested the relationship between stereoeoacy in left and right visual fields and the MTV of the contralateral VOF. The correlation between the right VOF and left stereoeoacy was found to be marginally significant [$R^2 = 0.37, F_{1,17} = 4.39, P = 0.058$, SI Appendix, Fig. S2B], whereas the correlation between the left VOF and right stereoeoacy was not significant [$R^2 = 0.058, F_{1,17} = 0.74, P = 0.41$, SI Appendix, Fig. S2B]. Group difference analysis also showed the same tendency (SI Appendix, Fig. S2 D and E). The lack of effect in the left VOF can be explained by multiple possible factors, such as a reduced reliability of stereoeoacy estimates or difficulty in identifying coherent streamlines, as mentioned above.

VOF Connects Cortical Regions Responding to Visual Stimuli with Binocular Disparity. To test our hypothesis that the right VOF connects cortical areas that are involved in binocular disparity processing, we performed fMRI experiments to measure the cortical areas activated by the same RDSs as used in the psychophysical experiment (Materials and Methods). We observed significant BOLD responses to the RDSs, compared with uncorrelated RDSs, in both dorsal (V3A/B, IPS0) and ventral (hV4, VO1/2) extrastriate cortices that were consistent with previous fMRI studies in humans (Fig. 3B) (16, 30–32). Importantly, both dorsal and ventral VOF endpoints overlapped with disparity-selective regions (Fig. 3 and SI Appendix, SI Materials and Methods). These results agree with our hypothesis that discrimination of stereoscopic depth involves an interaction between dorsal and ventral cortices through the VOF. We note that we did not find any significant interhemispheric differences in BOLD responses to RDSs compared with uncorrelated RDSs (uRDSs) in the majority of retinotopic areas (V3, V3A/B, hV4, VO, LO) except for IPS0, which showed a stronger BOLD response in the right hemisphere ($d' = 0.60, t_{5} = 2.58, P = 0.0495$, paired t test, SI Appendix, Fig. S7).

Psychophysical Experiment on Contrast Detection Sensitivity. Finally, we addressed whether the tissue properties of the right VOF are also related to another visual performance that does not require binocular integration. We measured the thresholds of participants’ contrast detection using Gabor patch stimuli (Fig. 4A). In contrast to disparity thresholds, contrast detection thresholds did not show a clear bimodal distribution (Fig. 4B), and were not significantly correlated with stereoeoacy ($r = 0.08, P = 0.82$). A simple linear model that included the tissue properties of the right VOF did not significantly predict the contrast detection threshold [$R^2 = 0.017, F_{1,17} = 0.29, P = 0.59$ for FA; $R^2 = 0.031, F_{1,17} = 0.55, P = 0.47$ for MTV, Fig. 4C]. None of the other models using FA or MTV in the other white matter tracts significantly explained the variabilities of contrast detection threshold either (SI Appendix, Table S2). Group difference analysis revealed no significant difference in the tissue property of the right VOF between the good (low contrast threshold, $n = 12$) and poor (high contrast threshold, $n = 7$) contrast sensitivity groups (Fig. 4D; $d' = 0.21, t_{17} = 0.44, P = 0.66$ for MTV; $d' = 0.16, t_{17} = 0.34, P = 0.74$ for FA). Taken together, the variability of FA and MTV values did not correlate with the performance of the contrast detection that does not require binocular integration. Relation of the VOF to other visual tasks such as color or motion detection is an open question for future research.
The tissue properties of the right VOF do not explain variabilities in sensory abilities because neuroanatomical and behavioral measurements collected from the same participants can be compared (33). We have used this advantage to compare human stereocuity and white matter properties. We found a significant statistical relationship between stereocuity and the microstructural properties in the right VOF, a specific white matter tract that connects the dorsal and ventral visual cortices (25, 26). These data support classical and recent theories that emphasize the importance of white matter tracts in understanding sensory and cognitive functions (34, 35). The behavior-anatomical correlates were found using the MTV and FA, two independent microstructural measurements, in both regression and group comparison analyses. Furthermore, we confirmed that the MTV had endpoints in disparity responsive regions of the dorsal and ventral cortices, suggesting that the MTV connects cortical regions that are involved in disparity processing. Finally, we found that the tissue properties of the right VOF were not related to contrast sensitivity.

A number of previous studies have used conventional diffusion tensor metrics, such as FA, to examine the tissue properties of white matter tracts relative to behavioral characteristics (33). In contrast, few recent studies have used advanced qMRI metrics, such as MTV (29), to assess the microstructural properties of white matter tracts. FA is a reproducible metric with high sensitivity for detecting the tissue structural differences in white matter tracts (33, 36). However, the microstructural interpretation of differences in FA is challenging because FA measurements can be associated with many biological factors, such as axon diameter, axon density, myelin-sheath thickness, and tightness of fasciculation due to crossing fibers (28, 36). Here, we combined dMRI with qMRI, which can provide additional information for inferring microstructural properties (29, 37). The MTV is a robust qMRI-based metric that quantifies local tissue volume within each voxel via quantification of proton density (29). There is converging evidence indicating that MTV is a reliable approximation of lipid and macromolecular volume fractions (38). While MTV has been used to quantify white matter tissue properties, this study demonstrates the relevance of MTV with behavioral measurements. Taken together, the relationship between the right VOF and stereocuity, as shown in both FA and MTV analyses, may reflect a difference in lipid or macromolecule volume fractions, such as myelin thickness or axon density, rather than the morphological configuration of axons, such as the degree of fiber crossings.

Duan et al. (39) have investigated the microstructural properties of visual white matter tracts between amblyopia and control groups. They observed a difference in the diffusion property (mean diffusivity) along the right VOF; however, this difference is not supported by qMRI measurements. Additionally, Duan et al. reported a difference in the diffusion property along the optic radiation, which we did not find in this study. Our results and those of Duan et al. (39) suggest that the microstructural basis of stereocuity is distinct from that of amblyopia.

Some visual neuroscience studies have emphasized the role of the dorsal stream in stereocuity (40–42), which is consistent with
experimental evidence showing the neural correlates of stereoscopic depth perception in dorsal areas (43); however, there are converging lines of evidence showing that not only dorsal but also ventral visual cortices are involved in binocular disparity processing, including computations of relative disparity and disparity-defined 3D shapes (11, 13, 14, 16, 30, 44–51). Other studies have suggested that the role of dorsal and ventral streams in stereopsis may be complementary because they are sensitive to different types of disparity information (7, 16–19, 52). Moreover, cortical representations that account for some aspects of binocular depth perception are found in higher regions of both the dorsal and ventral visual streams (31, 53), including cortical areas near the VOF endpoints (26). Here, we found that stereocuity is correlated with the properties of the VOF (Fig. 2). In addition, we have confirmed that the endpoints of the VOF overlap with disparity selective regions (Fig. 3 B and C). Therefore, the VOF may transmit perceptually relevant signals of disparity by connecting the dorsal and ventral cortices involved in binocular disparity processing.

We consider that the behavioral–structural relationship in the VOF may be explained by either or both of two potential factors: strategies of stereo perception that altered white matter or white matter plasticity altered stereo perception. Recent neurobiological studies have demonstrated that plasticity in the white matter microstructure, such as the degree of myelination, is dependent on neural activity or behavioral experience (54, 55). We speculate that the behavioral–structural relationship observed in this study might reflect differences in development, such as different levels of usage of binocular disparity as a stereo cue, or cue combination strategies across dorsal and ventral visual areas. Alternatively, it is also feasible that development of white matter, which has a significant impact on the efficient conduction of neural signals, will affect the accuracy of stereo perception. However, it is not yet understood how such modulation in conduction velocity is related to the optimality of neural computation for sensory discrimination (55).

While we have shown a significant relationship between the right VOF and stereocuity, we did not find statistically significant results for the left VOF. This asymmetry may result from a difference in technical detectability of the VOFs in the two hemispheres using tractography, probably because of a difference in the geometry of the sulci and gyrus patterns. An additional analysis combining exclusion criteria supports this interpretation (SI Appendix, Fig. S6). Alternatively, this asymmetry of the VOF may reflect a functional lateralization of cortical processing of binocular disparity, as reported in previous neuro-psychological or fMRI studies (4, 15, 30, 32, 56, 57). However, this interpretation of right hemispheric dominance in stereopsis is puzzling when one considers the fact that V3A/B and lV4 in both hemispheres primarily cover the contralateral visual field and there was no little difference in disparity discrimination performance (SI Appendix, Fig. S2A) and BOLD responses (SI Appendix, Fig. S7) between the left and right visual fields.

dMRI studies have focused on relatively long-range white matter tracts known to exist from anatomical studies (35). However, one might argue that fibers from other areas, such as V2 or MT, may also explain the variability in human stereocuity. We cannot exclude this possibility. Measuring such relatively short fibers requires a substantial improvement in data resolution, analysis methods, and anatomical knowledge of the human visual system. Furthermore, the resolution of our dMRI data did not allow us to reliably identify subcomponents of VOF terminating in near specific areas. Testing those questions with improved measurement techniques is an important future research direction.

In summary, the microstructural properties of the VOF explain the variability in human stereocuity. Stereocuity may be related to the microstructural properties of white matter pathway that supports communication between the dorsal and ventral visual cortices.

Materials and Methods
The code for reproducing psychophysical experiments and analyses is publicly available in OSF.io (https://osf.io/qdb8j/). The full anonymized dataset, which are collected from participants who provided a written informed consent on the data sharing (22 of 23 participants as of September 4, 2018), will be available upon request to the corresponding author (htakemur@nict.go.jp).

Participants. Twenty-three healthy volunteers (19 males, 4 females; mean age, 26.1 y old) participated in the study. None of the participants had a history of eye disease. All participants gave written informed consent to take part in this study, which was conducted in accordance with the ethical standards stated in the Declaration of Helsinki and approved by the local ethics and safety committees at the Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology.

Stereocuity Experiment. Nineteen participants (16 males, 3 females; mean age, 25.0 y old) took part in the experiment to determine their stereocuity. The stereocuity experiment employed a haploscope. Each eye viewed one-half of the monitor through an angled mirror and a front triangular prism mirror. Each RDS was composed of a central disk (diameter: 3") and surrounding ring (width: 0.5", outer diameter: 4"; see SI Appendix, Fig. S1A for an example). The surrounding ring always had zero disparity, whereas the binocular disparity in the central disk varied across trials (disparity magnitudes: ±0.12–7.68 arcmin), which were chosen based on a typical range of human stereocuity (22). In each trial, an RDS was presented at one of four different positions (Up-Right, Up-Left, Down-Right, and Down-Left), whose center was 3° away from the fixation point. Participants judged whether the central disk appeared nearer or farther than the surrounding ring by fixating on the central fixation point (SI Appendix, Fig. S1A). We defined stereocuity as the magnitude of binocular disparity that corresponded to the 84% correct rate in the task by fitting a cumulative Gaussian psychometric function. See SI Appendix, SI Materials and Methods for further technical details.

Contrast Threshold Experiment. Nineteen participants (15 males, 4 females; mean age, 26.0 y old) underwent a contrast threshold experiment. Fifteen of these participants also participated in the stereocuity experiment. We presented Gabor patch stimuli whose orientation was tilted 45° to the left or right from vertical (Fig. 4A). Participants were asked to judge whether the stimulus orientation was tilted toward the left or right. Participants judged whether the central disk appeared nearer or farther than the surrounding ring by fixating on the central fixation point (SI Appendix, Fig. S1A). We defined stereocuity as the magnitude of binocular disparity that corresponded to the 84% correct rate in the task by fitting a cumulative Gaussian psychometric function. See SI Appendix, SI Materials and Methods for further technical details.

Structural MRI Experiment. All MRI data were acquired using a 3T SIEMENS Trio Tim scanner at CiNet, National Institute of Information and Communications Technology, and Osaka University. We collected dMRI data (2 mm isotropic) from all participants (n = 23) using a 32-channel head coil. The diffusion weighting was isotropically distributed along the 64 directions (b = 1,000 s/mm²). Nondiffusion-weighted (b = 0) images were acquired at the beginning and end of the dMRI session (two b = 0 acquisitions per image set). Acquisition of the dMRI data took ~20 min for each participant.

We collected qMRI data from all participants (n = 23) using a 32-channel head coil. qMRI measurements (1 mm isotropic) were obtained using protocols described in a previous publication (29). Acquisition of the qMRI data took ~35 min for each participant.

Further details in structural MRI data acquisition and preprocessing methods are described in SI Appendix, SI Materials and Methods.

Diffusion MRI Data Analysis. dMRI data preprocessing was performed using mrDiffusion tools implemented in the vistasoftware distribution (https://github.com/vistalab/vistasoftware). We identified visual white matter tracts in each participant, from whole-brain streamline generated by probabilistic tractography implemented in MRtrix3 (www.mrtrix.org) (58) and selected by Linear Fascicle Evaluation (LiFE; https://francescosti2.github.io/life/) (59). Details are described in SI Appendix, SI Materials and Methods.

Quantitative MRI Data Analysis. qMRI data were processed using the mrQ software package (https://github.com/mezera/mrq) to produce the MTV maps (29). Details are described in SI Appendix, SI Materials and Methods.
Functional MRI Experiment. We collected fMRI data from eight participants who participated in the stereoeotact psychophysical experiment (seven males, one female; age range 16–61 y old). The data were collected by the experiment of the tracts in the whole brain. We performed the diffusion section of a 32-channel coil. Data were acquired at a resolution of 2.0-mm isotropic voxels with an interleaved T2*- weighted gradient echo sequence. Participants viewed gray background, RDS, or uRDS through a polarized 3D system, during which they performed a fixation task requiring vernier detection (31). We excluded two participants with poor task performance during the fMRI scan (<84% correct rate) from subsequent analyses. The disparity-selective areas are defined as cortical gray matter voxels that responded more strongly to RDS than uRDS (P < 0.05, one-sample t test). Acquisition of fMRI data took ~60 min for each participant. See SI Appendix, SI Materials and Methods for further technical details.

Tract Identifications and Evaluations. We identified seven white matter tracts (left and right IFL, left and right OR, forceps major, and left and right VOF) from dMRI dataset. We then evaluated the tissue properties of each tract and summarized the profile of each tract with a vector of 80 values representing the FA or MTV values sampled at equidistant locations along the white matter tracts. The relationship between tract properties and psychophysical performance was evaluated in regression and group comparison analyses. Further details are described in SI Appendix, SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Atsushi Wada for providing the computing environment; Aviv Mezer, Garkoitz Lermat-Uسابياغا،和Takashi Ueguchi for the suggestion on qMRI data collection; Thomas Baumgartner for his participation in an initial stage of this study; and Hiroshi Ban, Nobuhiro Hagura, Franco Pestilli, and Brian A. Wandell for comments on an earlier version of the manuscript. This study was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants JP15K04112 and JP17H04684 to H.T., JP16H01673 and JP18H05007 to I.F., JP16H05862 to K.A.) and “Program for Leading Graduate Schools” Grant of the Ministry of Education, Culture, Science, and Technology, Japan (to H.O.). This study was also supported by a grant from the Ministry of Internal Affairs and Communications (to I.F.).