The requirements for natural Th17 cell development are distinct from those of conventional Th17 cells

Jiyeon S. Kim, Jennifer E. Smith-Garvin, Gary A. Koretzky, and Martha S. Jordan

1Abramson Family Cancer Research Institute, 2Department of Medicine, and 3Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104

CD4+ T helper 17 (Th17) cells play a critical role in the adaptive immune response against extracellular pathogens. Most studies to date have focused on understanding the differentiation of Th17 cells from naive CD4+ T cells in peripheral effector sites. However, Th17 cells are present in the thymus. In this study, we demonstrate that a population of Th17 cells, natural Th17 cells (nTh17 cells), which acquire effector function during development in the thymus before peripheral antigen exposure, shows preferential usage of T cell receptor Vβ3. nTh17 cells are dependent on major histocompatibility complex (MHC) class II for thymic selection, yet unlike conventional Th17 cells, MHC class II expression on thymic cortical epithelium is not sufficient for their development. Further expression of TGF-β on medullary epithelium is necessary. Our findings define a Th17 population, poised to rapidly produce cytokines and exhibit effector functions at the interface of innate and adaptive immunity.
requirements and characteristics that distinguish this population from peripherally induced conventional Th17 cells are not well defined.

The present study utilizes fetal thymic organ culture (FTOC) to demonstrate definitively that a population of Th17 cells indeed develops in the thymus. These cells show unique characteristics in TCR gene usage and MHC class II requirements compared with those of conventional Th17 cells. Finally, a TCR signaling mutant reveals differential signaling requirements for the generation of these two distinct Th17 cell populations. Thus, our data define these natural Th17 cells (nTh17 cells) as a Th17 cell population that is distinct from conventional Th17 cells.

RESULTS AND DISCUSSION

We confirmed an earlier report (Marks et al., 2009) of an IL-17–expressing population within the CD4SP thymocyte compartment in WT mice (Fig. 1 A). The thymic IL-17+ CD4SP population is distinct from NKT and γδ T cells, as this population is still present in SAP (SLAM-associated protein)-deficient (Fig. S1 A; Nichols et al., 2005) and γδ TCR KO mice (Fig. S1 B), which lack NKT and γδ T cells, respectively. We demonstrate that a significant proportion of these IL-17-producing CD4SP thymocytes coexpress IL-17F, and, as reported (Marks et al., 2009), have other characteristics and lineage properties including IL-22 message, expression of the transcription factor ROR-γt, CCR6 (chemokine receptor 6), IL-23R, and CD44, a marker present on nTh17 cells and innate immune cells, but not conventional Th17 cells or IFN-γ (key feature of Th1 cells, respectively). In any Th1 cell lineages, and cytokine program, cells that coexpress the Th17 markers similarly, we found that in Rag2-GFP mice in which GFP marks newly generated thymocytes, virtually all thymic IL-17–producing CD4SP cells are GFP+, indicating that they are newly generated in the thymus (discussed further below; Fig. 2 D). As a more rigorous approach to analyze the ontogeny of thymic Th17 cells, we used FTOC, which revealed significant numbers of these cells at day 8 (Fig. 1 C), when the CD4SP population was clearly definable. These experiments demonstrate that a population of nTh17 cells develops in the thymus with the inherent ability to produce cytokines without the need for peripheral TCR–induced differentiation, thus sharing properties with other lymphocytes with innate-like characteristics.

Innate lymphocyte lineages that arise in the thymus often have a unique or skewed TCR repertoire (Lantz and Bendelac, 1994; Auzuara et al., 1997). We examined the TCR repertoire of nTh17 cells by analyzing their TCR β chain variable region (TCR Vβ) usage. nTh17 cells showed preferential usage of TCR Vβ3 compared with non–Th17 CD4SP thymocytes (11.5 ± 0.9% vs. 2.55 ± 0.10%), whereas expression of other Vβ genes was similar or slightly decreased in a complementary manner (e.g., Vβ6; Fig. 2 A). This pattern was also observed in nTh17 cells that developed in FTOC, thus verifying the thymic origin of cells preferentially expressing this TCR Vβ family member (Fig. 2 B). In contrast, Th17 cells isolated from the small intestinal lamina propria (LP), a physiologically enriched with Th17 cells, did not show skewing toward TCR Vβ3 (Fig. 2 C). Moreover, among the TCR Vβs that were analyzed, splenic and small intestinal LP Th17 cells showed no difference in TCR Vβ usage compared with non–Th17 CD4+ T cells from the same sites (Fig. 2 C and Fig. S2). Further analysis of Rag2-GFP mice revealed that, with age, a significant population of IL-17+ GFP+ cells emerged and that this population had even more highly skewed Vβ3 usage than their

Figure 1. A population of Th17 cells develops in the thymus.

(A) Thymocytes from C57BL/6 WT mice were stimulated ex vivo with PMA/ionomycin in the presence of brefeldin A and stained for surface markers and intracellular expression of IL-17A, IL-17F, and ROR-γt. Flow cytometry plots are gated on CD4+ TCR-β-TCR-γδ-CD1d-tetramer+ cells (first row). Histograms show the expression of the indicated transcription factor or surface marker on CD4+ TCR-β-TCR-γδ-CD1d-tetramer+IL-17A+ thymocytes (solid black line). (B) Quantitative RT-PCR analysis of messenger RNA (mRNA) transcripts in thymocyte populations (key) sorted from WT mice, relative to GAPDH. Error bars represent SEM. **, P ≤ 0.01; ***, P ≤ 0.001 (two-tailed Student’s t test). (C) Cells from day 8 culture of WT E16 FTOC were stimulated and stained for flow cytometry. Flow cytometry plots are gated on whole thymocytes (left) and CD4+ TCR-β-TCR-γδ-CD1d-tetramer+ cells (right). Histograms are as in A. Data are representative of at least three independent experiments with n ≥ 3 mice (or FT lobe [C]) per experiment.
IL-17$^+$ GFP$^+$ counterparts (Fig. 2 D). These data indicate preferential recirculation of VB3$^+$ nTh17 cells to the thymus and/or preferential retention of this subset. The lack of VB3 skewing among Th17 cells in the periphery could be caused by differential homing of nTh17 versus conventional Th17 cells and/or differences in the expansion of these populations at particular organ sites. It has been suggested that nTh17 cells preferentially home to the small intestinal LP (Marks et al., 2009), but whether these cells represented nTh17 cells or a combination of natural and conventional Th17 cells was unclear.

The innate-like properties and skewed VB usage prompted us to explore the requirements for nTh17 cell development. Thymic selection occurs via interactions between the TCR and MHC molecules expressed on thymic epithelial cells (TECs) and hematopoietic APCs (Klein et al., 2009). Because conventional CD4$^+$ T cells are selected on MHC class II, we investigated the role for this restricting element in nTh17 cell development using MHC class II–deficient mice. No nTh17 cells were present in these mice, indicating that selection of nTh17 cells is MHC class II dependent (not depicted). In addition to the identity of the selecting ligand, determining the specific thymic compartment (cortex vs. medulla) and cell type (epithelium vs. hematopoietic cells) presenting the ligand has provided insight into understanding the development of various lymphocyte lineages. To determine the role of radiotolerant TECs versus radiosensitive hematopoietic cells in nTh17 cell selection, we generated radiation BM chimeras with MHC class II–deficient TECs versus radiosensitive hematopoietic cells in nTh17 lymphocyte lineages. To determine the role of radioresistant hematopoietic cells in nTh17 cell development, we first used K14-Aβ mice that express MHC class II only on cTECs, whereas mTECs and hematopoietic APCs are MHC class II deficient (Lauffer et al., 1996). nTh17 cells were not found in the thymi of K14-Aβ mice (Fig. 3 C), indicating that MHC class II expression on cortical TECs (cTECs) and medullary TECs (mTECs) is sufficient to support nTh17 cell development and that there is not an absolute requirement for MHC class II expression on hematopoietic APCs for the generation of this population. Chimeras in which WT BM cells were transplanted into MHC class II–deficient hosts (CD45.2$^+$) were nearly devoid of nTh17 cells (Fig. 3 C), indicating that MHC class II expression on hematopoietic cells alone is not sufficient for normal nTh17 cell selection.

To define the contribution of cTECs versus mTECs in nTh17 cell development, we first used K14-Aβ mice that express MHC class II only on cTECs, whereas mTECs and hematopoietic APCs are MHC class II deficient (Lauffer et al., 1996). nTh17 cells were not found in the thymi of K14-Aβ mice (Fig. 3 C), indicating that MHC class II expression on cortical TECs alone is not sufficient for selection of nTh17 cells among nTreg and conventional CD4$^+$ T cells isolated from the small intestinal LP (C) of WT (B6) mice were assessed for the proportion of cells expressing the indicated TCR VB chain in IL-17A$^+$ versus IL-17A$^-$ cells. Pooled data from three independent experiments with n ≥ 3 mice (or FT lobe [B]) per experiment; bars and error bars represent mean ± SEM. *, P ≤ 0.05; ***, P ≤ 0.001 (two-way ANOVA followed by Bonferroni post-tests). (D) GFP expression of indicated populations from 6- and 16-wk-old RAG2-GFP mice. Percentage (mean ± SEM) of GFP$^+$ cells among nTh17 cells in 16-wk-old mice is shown. Graph represents the proportion of VB3$^+$ cells in the indicated thymocyte populations (key) in 16-wk-old mice. Data are from three independent experiments with n ≥ 9 mice per group. Bars and error bars represent mean ± SEM. *, P ≤ 0.05; ***, P ≤ 0.001 (one-way ANOVA followed by Tukey’s post-tests).
et al., 2010). nTh17 cells were nearly absent from thymi of C2TAkd mice, demonstrating that MHC class II expression on mTECs is necessary for nTh17 cell development and that combined MHC class II expression on cTECs and hematopoietic APCs cannot compensate for loss of MHC class II on mTECs. This observation is again in contrast to the requirements for selection of conventional CD4+ and nTreg cells, as these cell types are present in elevated frequencies in C2TAkd mice (Hinterberger et al., 2010). Expression of MHC class II in K14-Δβ mice is diminished compared with WT mice, presenting the possibility that lack of nTh17 cell generation could be the result of low MHC class II expression. However, C2TAkd mice have WT levels of MHC class II on cTECs, yet this pattern of expression is not sufficient for nTh17 cell selection. Collectively, these data show that MHC class II expression on cTECs, while sufficient for nTreg and conventional CD4+ T cell selection, is not sufficient for nTh17 cell development; rather, MHC class II expression on mTECs appears to play a critical role in nTh17 cell development. Further studies are required to determine whether mTECs are sufficient for the generation of nTh17 cells and to dissect how MHC class II:peptide presentation, alone or in concert with soluble factors and/or co-stimulatory molecules, dictates nTh17 lineage commitment.

The strength of TCR signaling is known to affect the development of many lymphocyte lineages, including cardiomyocytes (Hayes et al., 2005) and CD4+ nTreg cells (Jordan et al., 2001). SLP-76 (SH2 domain–containing leukocyte protein of 76 kD) is a critical adaptor protein for thymocyte selection and TCR signaling (Koretzky et al., 2006). Recently, we showed that mutation of tyrosine 145 of SLP-76 (Y145F) dampens signaling (Koretzky et al., 2006). Interestingly, these mice had a marked increase in the proportion and absolute number of nTh17 cells compared with WT mice (Fig. 4, A and B). nTh17 cells in Y145F mice were phenotypically similar to nTh17 cells from WT mice with respect to cytokine potential and expression of cell surface markers (Fig. S3, A and B). They developed in FTOC with an increased frequency and number compared with WT (Fig. S3, C and D) and displayed preferential usage of TCR VB3 (Fig. S3 E). It is unclear why Y145F mice are enriched for nTh17 cells because agonist peptides have been implicated in their development (Marks et al., 2009). We speculate that the altered responsiveness of Y145F thymocytes results in selection of CD4+ cells that would otherwise largely be negatively selected. However, to rule out the possibility that contribution of cell-extrinsic factors drive enhanced nTh17 development in Y145F mice, we generated radiation mixed BM chimeras in which WT (Thy1.1) and Y145F BM were mixed and transplanted into lethally irradiated WT (CD45.1+Thy1.2+) host mice. Regardless of the chimism, which can affect the degree of possible extrinsic factors, thymocytes derived from BM had the same proportion of nTh17 cells compared with WT BM (Fig. 5 A). These data indicate that the enrichment of nTh17 cells in Y145F thymuses is a cell-intrinsic property. This finding is in contrast to a CD8+ innate-like lymphocyte population that has recently been shown to be increased in these mice via a cell-extrinsic mechanism (Gordon et al., 2011).

Despite the enrichment of thymic nTh17 cells, surprisingly, CD4+ T cells from the small intestinal LP of Y145F mice showed greatly reduced IL-17 production and ROR-γt expression compared with WT LP cells (Fig. 5, A and B). Lack of Th17 cells in the Y145F

Figure 3. MHC class II expression on thymic medullary epithelium is necessary for selection of nTh17 cells. (A) Thymocytes from BM chimeras were stimulated and analyzed. Representative flow cytometry plots gated on live thymocytes (top) or CD4+ TCR-β-CD8−NK1.1− nTh17 cells (bottom) from donor BM-derived cells (CD45.2+) are shown. (B and C) The proportion (left) or number (right) of nTh17 cells of BM donor origin in indicated chimeras were phenotypically similar to nTh17 cells from WT mice with respect to cytokine potential and expression of cell surface markers (Fig. S3, A and B). They developed in FTOC with an increased frequency and number compared with WT (Fig. S3, C and D) and displayed preferential usage of TCR VB3 (Fig. S3 E). It is unclear why Y145F mice are enriched for nTh17 cells because agonist peptides have been implicated in their development (Marks et al., 2009). We speculate that the altered responsiveness of Y145F thymocytes results in selection of CD4+ cells that would otherwise largely be negatively selected. However, to rule out the possibility that contribution of cell-extrinsic factors drive enhanced nTh17 development in Y145F mice, we generated radiation mixed BM chimeras in which WT (Thy1.1) and Y145F BM were mixed and transplanted into lethally irradiated WT (CD45.1+Thy1.2+) host mice. Regardless of the chimism, which can affect the degree of possible extrinsic factors, thymocytes derived from BM had the same proportion of nTh17 cells compared with WT BM (Fig. 5 A). These data indicate that the enrichment of nTh17 cells in Y145F thymuses is a cell-intrinsic property. This finding is in contrast to a CD8+ innate-like lymphocyte population that has recently been shown to be increased in these mice via a cell-extrinsic mechanism (Gordon et al., 2011).

Despite the enrichment of thymic nTh17 cells, surprisingly, CD4+ T cells from the small intestinal LP of Y145F mice showed greatly reduced IL-17 production and ROR-γt expression compared with WT LP cells (Fig. 5, A and B). Lack of Th17 cells in the Y145F
LP could be caused by the inability of Y145F peripheral CD4+ T cells to differentiate into Th17 cells, a defect in Y145F CD4+ T cells homing to peripheral sites, or an altered gut environment resulting from an unappreciated effect of the Y145F mutation. Naive (CD44hiCD62Lhi) Y145F peripheral CD4+ T cells showed a severe defect in IL-17 production compared with WT cells when cultured in vitro under conditions that promote Th17 cell differentiation (Fig. 5 C), similar to T cells deficient in the SLP-76 binding partner Itk (IL-2–inducible T cell kinase; Gomez-Rodriguez et al., 2009). In contrast, in vitro differentiation to Th1 or Th2 lineages was intact (Fig. S4, A and B), indicating that Y145F CD4+ T cells are not globally defective in cytokine production or differentiation into effector subsets. Consistent with these findings, Y145F BM-derived CD4+ T cells showed defective IL-17 production in mixed BM chimeras in the presence of WT BM–derived APCs and a WT gut environment, indicating that the Y145F peripheral CD4+ LP T cells have an intrinsic defect in Th17 lineage commitment (Fig. 5 D). Because the number of CD4+ T cells in the small intestinal LP of Y145F mice is comparable with that of WT mice and splenic CD4+ IL-17+ T cells are present in these mice, we speculate that defective trafficking is unlikely (not depicted). To address the permissiveness of the Y145F intestinal environment, we generated BM chimeras in which WT BM was transplanted into irradiated Y145F host. WT donor BM-derived T cells showed intact IL-17 production in Y145F host, thus again supporting the idea that the defective peripheral Th17 phenotype in Y145F mice is via a cell-intrinsic mechanism (Fig. 5 E).

Collectively, these data demonstrate that nTh17 development and peripheral Th17 conversion have different signaling requirements. The biochemical mechanism underlying preserved nTh17 generation in the face of defective conventional Th17 cell differentiation in Y145F mice is not known. It is possible that IL-17–producing cells are present among Y145F thymocytes because high affinity T cells are still represented within the developing Y145F repertoire, allowing for compensation of defective TCR signal transduction. Alternatively, the differences in signaling pathways between thymocytes and

Figure 5. Y145F CD4+ T cells have an intrinsic defect in peripheral Th17 cell differentiation. (A and B) Small intestinal LP cells were isolated from WT and Y145F mice, stimulated, and analyzed. Representative flow cytometry plots gated on CD4+CD3+TCR-β+ cells (A) and pooled data (B) from at least three independent experiments with n ≥ 3 per group in each experiment (mean ± SEM; p-value from two-tailed Student’s t test) are shown. (C) Naive CD4+ T cells from WT and Y145F mice were isolated by cell sorting and cultured with plate-bound anti-CD3/CD28 and TGF-β, IL-6, IL-23, anti–IL-4, and anti–IFN-γ for 3 d. Cells were restimulated with either anti-CD3/CD28 or PMA/ionomycin with brefeldin A followed by intracellular staining for IL-17A. Data are representative of at least three independent experiments. (D and E) Small intestinal LP cells from mixed BM chimeras (D) or BM chimeras with the indicated hosts (E) were stimulated and analyzed. Representative flow cytometry plots gated on CD4+CD3+TCR-β+ cells showing the percentage of IL-17A+ cells among Thy1.1+ or CD45.2+ populations. (D) Pooled data representing the proportion of nlTh17 cells among CD45.2+ in either WT (Thy1.1+) or Y145F (CD45.2+)–derived thymocytes from WT and Y145F mixed BM chimeras (mean ± SEM; p-value from two-tailed Student’s t test). Data are from two independent experiments with n ≥ 6 mice per group.

Figure 4. Y145F mice show enrichment of thymic nTh17 cells via a cell-intrinsic mechanism. (A and B) Thymocytes from WT and Y145F mice were stimulated with PMA/ionomycin and analyzed. Representative flow cytometry plots gated on CD4+CD3+TCR-β+NK1.1– cells (A) and pooled data (B) from at least three independent experiments with n ≥ 3 per experiment are shown. Error bars represent SEM. (C) Thymocytes from mixed BM chimeras were stimulated and analyzed. Representative flow cytometry plots gated on CD4+ TCR-β+NK1.1– cells showing the percentage of IL-17A+ cells among Thy1.1+ or CD45.2 populations. (D) Pooled data representing the proportion of nlTh17 cells among CD45.2+ in either WT (Thy1.1+)– or Y145F (CD45.2+)–derived thymocytes from WT and Y145F mixed BM chimeras (mean ± SEM; p-value from two-tailed Student’s t test). Data are from two independent experiments with n ≥ 6 mice per group.

Brief Definitive Report
naive peripheral T cells and/or the requirements for IL-17 induction in these cell populations may be fundamentally different. Indeed, recent publications suggest that different IL-17-producing T cell populations have differential requirements for TCR, and/or cytokine-initiated signal transduction for Th17 lineage differentiation (Tanaka et al., 2009; Ghoreschi et al., 2010; Powolny-Budnicka et al., 2011).

We have described a population of Th17 cells with innate immune cell characteristics. These cells acquire effector function during thymic development, show a skewed TCR gene usage, and have positive selection requirements distinct from that of conventional T cells. Using a TCR signaling mutant, we further demonstrate that the nTh17 cells constitute a population distinct from conventional Th17 cells, as these mice have enriched nTh17 cells in the thymus but show markedly defective conventional Th17 cell differentiation in the periphery because of cell-intrinsic mechanisms. Understanding the biology of nTh17 cells will provide insight into recently identified Th17 cells in human thymus and umbilical cord blood (Cosmi et al., 2008; Kleinschek et al., 2009) and may also shed light on the role of IL-17 in bridging innate and adaptive immune responses.

MATERIALS AND METHODS

Mice. C57BL/6J, B6.PL-Thy1.2/Cyj, FVB-Tg(Rag2-EGFP)1Myr (B6.129P2-Tcrgs0069Mjb (γδ TCR KO) mice) were purchased from Jackson Laboratory. B6 CD45.1, Ab1 μυκόν (MHC class II KO) mice purchased from Taconic. SL-P-76 Y145F (Jordan et al., 2008) mice were purchased from K. Nichols, Children’s Hospital of Philadelphia, PA; Laufer et al., 2017 (provided by K. Nichols, Children’s Hospital of Philadelphia, PA); Laufer et al., 2017 (provided by L. Klein, Ludwig-Maximilians-University, Munich, Germany; Hinterberger et al., 2010) for T cell isolation and differentiation.

FTOC. Fetal thymic lobes were dissected from embryonic day (E) 15 embryos and cultured on sponge-supported filter membranes (Gelfoam absorbable gelatin sponge, USP 7 mm [Pfizer]; Nuclepore track-etched membranes, BioRad) in a humidified air and IMDM (10% FCS/50 µM 2-mercaptoethanol/2 mM t-glutamine/penicillin/streptomycin). Medium was changed after 3 d of culture.

TCR Vβ analysis. Proportion of the indicated TCR Vβ among the analyzed populations was assessed using TCR Vβ screening panel (BD) and flow cytometry.

Radiation BM chimeras. Recipient mice were irradiated with 950 rad and injected i.v. with a mixture of T cell–depleted (magnetic bead depletion; QIAGEN) BM from the indicated donor mice. Recipients were reconstituted with 2 x 10^6 BM cells and maintained on sterile water with sulfamethoxazole/trimethoprim for 2–3 wk. Chimeras were analyzed at 5–6 wk (MHC class II KO BM into WT hosts) or 8 wk (all other BM chimeras) after transplantation.

Isolation of LP lymphocytes. The small intestine was dissected, cleared from mesentery, fat, and Peyer’s patches, washed in PBS, and cut into pieces. After incubation in RPMI 1640 with EDTA, epithelial cells were separated, and the tissue was digested with Liberase TM and DNase I (both from Roche) at 37°C. LP lymphocytes were recovered after filtering the digested tissue through a 70-µm cell strainer and washed in media.

Ex vivo stimulation. Freshly isolated or cultured lymphocytes were stimulated ex vivo for 5 h with 30 ng/ml PMA and 500 ng/ml ionomycin in the presence of 1 µg/ml brefeldin A. Cells were then assayed for cytokine production by intracellular flow staining.

T cell isolation and differentiation. CD4^+ T cells from spleens and lymph nodes of the indicated mice were purified by negative selection and magnetic separation (Miltenyi Biotec) followed by sorting of naive CD4^+CD25^-CD44^+CD62L^+ population using the FACSaria II (BD). Cells were activated by 1 µg/ml plate-bound anti-CD3 and 5 µg/ml anti-CD28 (both from eBioscience) in the presence of 5 ng/ml TGF-β, 20 ng/ml IL-6, 10 ng/ml IL-23, 10 µg/ml anti-IL-4, and 10 µg/ml anti-IFN-γ for Th17 polarization; 50 U/ml IL-12 and 10 µg/ml anti-IL-4 for Th1 polarization; and 2,000 U/ml IL-4, 10 µg/ml anti-IL-12, and 10 µg/ml anti-IFN-γ for Th2 polarization.

Flow cytometry. The following antibodies were used for surface stain (from BD unless noted): anti-CD3-PE-Cy5 or -PB (BioLegend), anti-CD4-PE-Cy7 or -FITC, anti-CD69-PETR (Invitrogen) or –APC-Cy7, anti-CD44-AF700 (BioLegend) or –PE anti-CD45.1-PE, anti-CD45.2-PE, anti-CD62L-APC-H7, anti-IL-4–FITC or -PE, anti-TCR-β-PE-Cy7, anti-CD26-APC, anti-CD100-Cy7, anti-IL-17A-Cy7, anti-IL-17F–FP–AF647 (eBioscience), anti-IL-17A-Cy7, anti-IL-17F–FP–AF647 (eBioscience), or anti-IL-17A-Cy7, anti-CD1d-tetramer-APC (National Institutes of Health, Bethesda, MD). For intracellular cytokine or transcription factor staining, experiments were performed using Foxp3 staining buffer (eBioscience) and a Becton Dickinson (Mountain View, CA) FACSAria II 4-laser flow cytometer with FlowJo software (Tree Star).
REFERENCES

11 August 2014

RETRACTED