Association of frailty with all-cause mortality and bleeding among elderly patients with acute myocardial infarction: a systematic review and meta-analysis

Prapaipan Putthapiban¹, Wasawat Vutthikraivit², Pattara Rattanawong³, Weera Sukhumthammarat¹, Napatt Kanjanahattakij¹, Jakrin Kewcharoen³, Aman Amanullah⁴

¹Department of Internal Medicine, Einstein Medical Center, Philadelphia, PA, USA
²Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
³University of Hawaii Internal Medicine Residency Program, Honolulu, HI, USA
⁴Institute of Heart and Vascular Health, Einstein Medical Center, Philadelphia, PA, USA

Abstract

Background Frailty is a multidimensional syndrome that reflects the physiological reserve of elderly. It is related to unfavorable outcomes in various cardiovascular conditions. We conducted a systematic review and meta-analysis of the association of frailty with all-cause mortality and bleeding after acute myocardial infarction (AMI) in the elderly.

Methods We comprehensively searched the databases of MEDLINE and EMBASE from inception to March 2019. The studies that reported mortality and bleeding in AMI patients who were evaluated and classified by frailty status were included. Data from each study were combined using the random-effects, generic inverse variance method of DerSimonian and Laird to calculate hazard ratio (HR), and 95% confidence interval (CI).

Results Twenty-one studies from 2011 to 2019 were included in this meta-analysis involving 143,301 subjects (mean age 75.33-year-old, 60.0% male). Frailty status was evaluated using different methods such as Fried Frailty Index. Frailty was statistically associated with increased early mortality in nine studies (pooled HR = 2.07, 95% CI: 1.67–2.56, \(P < 0.001 \), \(I^2 = 41.2\% \)) and late mortality in 11 studies (pooled HR = 2.30, 95% CI: 1.70–3.11, \(P < 0.001 \), \(I^2 = 65.8\% \)). Moreover, frailty was also statistically associated with higher bleeding in 7 studies (pooled HR = 1.34, 95% CI: 1.12–1.59, \(P < 0.001 \), \(F = 4.7\% \)).

Conclusion Frailty is strongly and independently associated with bleeding, early and late mortality in elderly with AMI. Frailty assessment should be considered as an additional risk factor and used to guide toward personalized treatment strategies.

J Geriatr Cardiol 2020; 17: 270–278. doi:10.11909/j.issn.1671-5411.2020.05.006

Keywords: Acute myocardial infarction; Bleeding; Frailty; Mortality

1 Introduction

Frailty is a complex clinical phenotype that reflects an age-associated decline in reserve, responding to physiological stressors.[¹] Common manifestations of frailty are slowness, reduced activity, low energy level, and unintentional weight loss.[²] Prevalence of Frailty in elderly adult ranging from 4% to 59.1% and more common in female.[³] It varied depending on the study population, age group as well as an assessment strategy.[⁴] Prevalence of frailty found to be higher with older age,[⁵] hence, frailty becomes more compelling with an aging society.

There have been over 20 tools developed to assess frailty.[⁶] At least one of five core domains of frailty phenotype, including slowness, weakness, low physical activity, exhaustion, and shrinking is evaluated to determine frailty status.[²] For example, Fried Frailty Index was developed from the Cardiovascular Health Study, consisting of unintentional weight loss, self-reported exhaustion, weakness, slow walking speed, and low physical activity. Frailty was defined if 3 or more mentioned criteria present[¹] and was found to be independently predictive of hospitalization and death.

Frailty has been associated with increased mortality in several cardiovascular diseases.[²] Cacciatore, et al.[⁷] showed that chronic heart failure patients who were frail had a lower 10-year survival (6% vs. 31%). Anand, et al.[⁸] studied the relationship between frailty and outcomes following transcatheter aortic valve implantation. Interestingly, frailty was associated with increase both early and late mortality, HR = 2.35 (95% CI: 1.78–3.09, \(P < 0.001 \)) and HR = 1.63 (95% CI: 1.34–1.97, \(P < 0.001 \)), respectively. Some studies showed a connection between less aggressive management of acute coronary syndrome in frail patients.[⁴,⁹,¹⁰]
Dual antiplatelet is a cornerstone in AMI treatment according to 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction (STEMI) and 2014 AHA/ACC guideline for the management of patients with non-ST elevation acute coronary syndrome. Bleeding is one of the major complications following AMI management. Comparing risk and benefit is often time delicate, especially in the elderly population. Thus, we conducted a systematic review and meta-analysis to assess the associated of frailty with all-cause mortality and bleeding in elderly AMI patients.

2 Methods

2.1 Search strategy

Two investigators (PP and WS) independently searched for published studies indexed in MEDLINE and EMBASE databases from inception to March 2019 using a search strategy that included the term for “frailty (and its synonyms)” and “myocardial infarction”. Only English language publications were included. A manual search for additional pertinent studies and review articles using references from retrieved articles was also completed.

2.2 Inclusion criteria

The eligibility criteria included the following: (1) prospective cohort study reporting the incidence of frailty in AMI patients. No restriction was placed on frailty criteria. (2) The primary outcome was all-cause mortality after AMI, either reported in short (< 1 year) or long term (> 1 year). The secondary outcome was significant bleeding, which defined as intracranial hemorrhage, retroperitoneal hemorrhage, hemoglobin drop ≥ 4 g/dL or any bleeding requiring blood transfusions. Studies that report either primary or secondary outcome were included. (3) Calculation of relative risk, hazard ratio, odds ratio, incidence ratio, or standardized incidence ration with 95% CI or provision of sufficient raw data for these calculations were provided.

2.3 Data extraction

A standardized data collection form was used to obtain the following information from each study: title of study, name of first author, year of study, year of publication, country, number of participants, demographic data of participants, criteria used to identify frailty, type of AMI, outcome of interest (either all-cause mortality or bleeding), and average duration of follow-up.

To ascertain the accuracy, four investigators (NK, WV, PR, JK) independently performed this data extraction process. Any data discrepancy was resolved by referring back to the original articles. The Newcastle-Ottawa quality assessment scale was used to evaluate each study in three domains: recruitment and selection of the participants, similarity and comparability between the groups, and ascertainment of the outcome of the interest among cohort studies.

2.4 Data synthesis and analysis

We performed a meta-analysis of the included studies using a random-effects model given a wide number of frailty criteria used. The extracted studies were excluded from the analysis if they did not present an outcome in each intervention group or did not have enough information required for continuous data comparison. We pooled the point estimates from each study using the genetic inverse-variance method of Der Simonian and Laird. The heterogeneity of effect size estimates across these studies was quantified using the \(I^2 \) statistic and Q statistic. For Q statistic, substantial heterogeneity was defined as \(P < 0.10 \). The \(I^2 \) statistic rages in value from 0 to 100% (\(I^2 < 25\% \), low heterogeneity; \(I^2 = 25\% -50\% \), moderate heterogeneity; and \(I^2 > 50\% \), substantial heterogeneity). A sensitivity analysis was performed to assess the influence of the individual studies on the overall results by omitting one study at a time. Publication bias was assessed using a funnel plot. Pooled HR, sensitivity analysis, funnel plot and forest plot were performed using the Stata SE 15.1 software from StatCor L.P. Egger test was also performed using the Stata SE 15.1 software from StatCor L.P.

3 Results

3.1 Description of included studies

Our search strategy yielded 535 potentially relevant articles (368 articles from EMBASE and 167 articles from MEDLINE). After exclusion of 152 duplicates, 354 underwent title and abstract review. Three hundred and six articles were excluded at this stage since they were not cohort studies, and they were not conducted in patients with AMI, leaving 48 articles for full-length article review. Twenty-one articles were excluded since no report of frailty related to exceptional outcomes. Four articles were excluded due to duplicated population, and three articles were excluded because of no primary data. Therefore, twenty prospective cohort studies of AMI patients were in clouded in this meta-analysis. Figure 1 outlines the search and literature review process. The summary of the clinical characteristic of included studies is provided in Table 1. The Newcastle-Ottawa scales of the included studies are described in the supplement Table 1S.
Figure 1. Search methodology and selection process.

Table 1. Baseline characteristics and summary of included studies in meta-analysis.

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Definition of frailty</th>
<th>N</th>
<th>Age (mean ± SD)</th>
<th>Male gender, %</th>
<th>Population</th>
<th>Proportion of frail, %</th>
<th>Follow-up, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batty, 2019</td>
<td>UK</td>
<td>Fried Frailty Index</td>
<td>280</td>
<td>81 ± 4</td>
<td>60</td>
<td>NSTEMI</td>
<td>27.5</td>
<td>12 (censored)</td>
</tr>
<tr>
<td>Blanco, 2017</td>
<td>France</td>
<td>Edmonton Frail Scale</td>
<td>236</td>
<td>85.9</td>
<td>N/A</td>
<td>NSTEMI, STEMI</td>
<td>20.8</td>
<td>15.67</td>
</tr>
<tr>
<td>Calvo, 2018</td>
<td>Spain</td>
<td>FRAIL scale</td>
<td>259</td>
<td>82.6 ± 6</td>
<td>57.9</td>
<td>STEMI</td>
<td>19.7</td>
<td>-</td>
</tr>
<tr>
<td>Dodson, 2016</td>
<td>USA</td>
<td>Slow gait (< 0.8 m/s)</td>
<td>338</td>
<td>73.6 ± 6.01</td>
<td>59.16</td>
<td>NSTEMI, STEMI</td>
<td>53.6</td>
<td>12 (censored)</td>
</tr>
<tr>
<td>Dodson, 2018</td>
<td>USA</td>
<td>Frailty Point Scoring System</td>
<td>12,933</td>
<td>75.3 ± 7.7</td>
<td>60.2</td>
<td>NSTEMI, STEMI</td>
<td>5.3</td>
<td>-</td>
</tr>
<tr>
<td>Ekerstad, 2018</td>
<td>Sweden</td>
<td>CFS</td>
<td>307</td>
<td>83.97 ± 6.63</td>
<td>51.1</td>
<td>NSTEMI</td>
<td>48.5</td>
<td>80.4</td>
</tr>
<tr>
<td>Flint, 2018</td>
<td>USA</td>
<td>Slow gait (< 0.8 m/s)</td>
<td>329</td>
<td>73.3 ± 6.2</td>
<td>68.4</td>
<td>NSTEMI, STEMI</td>
<td>53.7</td>
<td>12 (censored)</td>
</tr>
<tr>
<td>Graham, 2013</td>
<td>Canada</td>
<td>Edmonton Frail Scale</td>
<td>183</td>
<td>75.4</td>
<td>67.2</td>
<td>NSTEMI, STEMI</td>
<td>30.1</td>
<td>36 (censored)</td>
</tr>
<tr>
<td>Herman, 2019</td>
<td>Netherlands</td>
<td>VMS score</td>
<td>206</td>
<td>79 ± 6.4</td>
<td>58</td>
<td>STEMI</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Kang, 2015</td>
<td>China</td>
<td>Clinical Frail Scale</td>
<td>352</td>
<td>74 ± 6.5</td>
<td>57.7</td>
<td>NSTEMI, STEMI</td>
<td>43.18</td>
<td>4</td>
</tr>
<tr>
<td>Llao, 2019</td>
<td>Spain</td>
<td>FRAIL scale</td>
<td>531</td>
<td>84.3 ± 4</td>
<td>62.5</td>
<td>NSTEMI</td>
<td>27.3</td>
<td>6</td>
</tr>
<tr>
<td>Nunez, 2017</td>
<td>Spain</td>
<td>Fried Frailty Index</td>
<td>270</td>
<td>78 ± 7</td>
<td>56.7</td>
<td>NSTEMI</td>
<td>35.6</td>
<td>52.8</td>
</tr>
<tr>
<td>Patel, 2018</td>
<td>Australia</td>
<td>Friedly Index Parameter</td>
<td>3944</td>
<td>74.33</td>
<td>66.0</td>
<td>NSTEMI, STEMI</td>
<td>27.7</td>
<td>6</td>
</tr>
<tr>
<td>Salinas, 2016</td>
<td>Spain</td>
<td>SHARE-FI</td>
<td>190</td>
<td>82.76 ± 4.85</td>
<td>39.5</td>
<td>NSTEMI, STEMI</td>
<td>37.9</td>
<td>1</td>
</tr>
<tr>
<td>Salinas, 2017</td>
<td>Spain</td>
<td>SHARE-FI</td>
<td>234</td>
<td>82.74 ± 4.9</td>
<td>40.2</td>
<td>NSTEMI, STEMI</td>
<td>40.2</td>
<td>6 (censored)</td>
</tr>
<tr>
<td>Salinas, 2018</td>
<td>Spain</td>
<td>SHARE-FI</td>
<td>285</td>
<td>82.47 ± 4.77</td>
<td>60</td>
<td>NSTEMI, STEMI</td>
<td>38.2</td>
<td>12 (censored)</td>
</tr>
<tr>
<td>Sanchis, 2014</td>
<td>Spain</td>
<td>Green scales</td>
<td>324</td>
<td>77 ± 7</td>
<td>57</td>
<td>NSTEMI, STEMI</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>Sigh, 2011</td>
<td>USA</td>
<td>Fried Frail Index</td>
<td>545</td>
<td>74.72</td>
<td>69</td>
<td>NSTEMI, STEMI</td>
<td>21.47</td>
<td>35</td>
</tr>
<tr>
<td>Sugino, 2014</td>
<td>Japan</td>
<td>CSHA-CFS</td>
<td>62</td>
<td>88.1 ± 2.5</td>
<td>58.1</td>
<td>STEMI</td>
<td>35.5</td>
<td>1</td>
</tr>
<tr>
<td>White, 2015</td>
<td>USA</td>
<td>Fried Frail Index</td>
<td>4996</td>
<td>73.3</td>
<td>53.8</td>
<td>NSTEMI</td>
<td>4.7</td>
<td>17.1</td>
</tr>
</tbody>
</table>

CFS: clinical frailty score; CSHA-CFS: Canadian Study of Health and Aging Clinical Frailty Scale score; NSTEMI: non-ST elevation myocardial infarction; SHARE-FI: Survey of Health, Ageing and Retirement in Europe; STEMI: ST elevation myocardial infarction; VMS: veiligheds management system.
3.2 Definitions of frailty

Frailty was identified by authors using objective assessments. Various frailty-defining tools were used. Details of each tool are provided in supplement Table 2S. There was no subjective frailty, which was based on judgments of research team alone included in our meta-analysis.

3.3 Meta-analysis results

Twenty-one studies from August 2011 to February 2019 were included in this meta-analysis involving 143,301 subjects with AMI, mean age was 75.33-year-old and 60.0% were male. Ten thousand and two subjects (6.98% of total subjects) were determined as frail. Nine studies involving 5995 subjects with AMI (30.43% of subjects were frail) revealed an increased early (< 1 year) all-cause mortality among AMI patients with frailty status compared to those without frailty status, with a pooled HR of 2.07 (95% CI: 1.67–2.56, \(P < 0.001, I^2 = 41.2\% \)). A forest plot of this meta-analysis is shown in Figure 2.

In subgroup analysis among type of AMI, four studies were included in STEMI involving 1,802 subjects (322 patients with frailty status and 1480 patients with non-frailty status). All four studies revealed statistical significantly increased early all-cause mortality among frail STEMI patients. The pooled analysis demonstrated a significant increased early all-cause mortality in frail STEMI patient compared to those without frail status (HR = 3.36, 95% CI: 1.43–7.88, \(P = 0.005, I^2 = 55.7\% \)). In NSTEMI cohorts, three studies were included in the analysis involving 3507 subjects (1996 patients were frail and 1551 were non-frail). The pooled analysis again demonstrated a significant increased risk of early all-cause mortality in NSTEMI patients with frailty status compared to those without frailty status (HR = 1.99, 95% CI: 1.59–2.50, \(P < 0.001, I^2 = 48.9\% \)). A forest plot of this meta-analysis is shown in Figure 3.

For late all-cause mortality (≥ 1 year), there were 11 studies available involving 1400 frail and 6693 non-frail patients. One of eleven studies did not demonstrate a statically significant association between frailty and late all-cause mortality. However, the pooled analysis demonstrated a statistically significant increased risk of late all-cause mortality in frail group compared to non-frail group with HR = 2.30 (95% CI: 1.70–3.11, \(P < 0.001, I^2 = 65.8\% \)). Forest plot of this meta-analysis is shown in Figure 4.

To access the association of significant bleeding as the outcome, seven studies that reported bleeding as an outcome were analyzed, involving 134,640 patients (6.24% of patients were frail). The pooled analysis also demonstrates a statistically significant increased risk of severe bleeding in frail patients compared to non-frail patients with the pooled HR 1.34 (95% CI: 1.12–1.59, \(P = 0.001, I^2 = 4.7\% \)). Forest plot of this meta-analysis is shown in Figure 5.

<table>
<thead>
<tr>
<th>Study, year</th>
<th>RR (95% CI)</th>
<th>Weight, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calvo, 2018[17]</td>
<td>3.96 (1.16–13.54)</td>
<td>3.02</td>
</tr>
<tr>
<td>Ekerstad, 2018[19]</td>
<td>2.04 (1.47–2.83)</td>
<td>29.51</td>
</tr>
<tr>
<td>Herman, 2019[20]</td>
<td>9.60 (1.61–57.25)</td>
<td>1.46</td>
</tr>
<tr>
<td>Kang, 2015[21]</td>
<td>5.39 (1.48–19.69)</td>
<td>2.73</td>
</tr>
<tr>
<td>Liao, 2019[22]</td>
<td>2.82 (1.59–5.01)</td>
<td>12.37</td>
</tr>
<tr>
<td>Patel, 2018[23]</td>
<td>2.03 (1.60–2.58)</td>
<td>42.99</td>
</tr>
<tr>
<td>Salinas, 2017[24]</td>
<td>2.54 (1.12–5.78)</td>
<td>6.50</td>
</tr>
<tr>
<td>Sagino, 2014[25]</td>
<td>6.38 (1.05–38.78)</td>
<td>1.43</td>
</tr>
<tr>
<td>Overall (I-squared = 13.7%, (P = 0.322))</td>
<td>2.34 (1.88–2.91)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 2. Risk of short term (< 1 year) mortality in included studies. Summary meta-estimate calculations based on random-effects model analysis.
3.4 Sensitivity analysis

To assess the stability of the results of the meta-analysis, we conducted a sensitivity analysis by excluding one study at a time. None of the result was significantly altered, as the results after removing one study at a time were similar to
that of the main meta-analysis indicating that our results were robust (Supplement Figure 1–3).

3.5 Publication bias

To investigate potential publication bias, we examined the contour-enhanced funnel plot of the included studies in assessing change in the log odd ratio of early all-cause mortality, late all-cause mortality or bleeding. The vertical axis represents studies size (standard error) while the horizontal axis represents effect size (log odds ratio). The distribution of studies on both sides of the mean was symmetrical.

4 Discussion

In our systematic review and meta-analysis, we explored the association between frailty and outcome of elderly with AMI, including early mortality, late mortality, and bleeding in 20 studies comprising 143,301 patients with frail elderly. We have made notably important observation. First, frail AMI patients have over twice as high risk of both early and late mortality than non-frail patients. The effect of frailty is even more prominent in STEMI subgroups. Second, a variety of assessment tool was used to determined frailty resulting in a wide range of prevalence of frailty in studied cohorts. However, all study observed a similar association between frailty and interested outcomes.

Frailty has become an emerging consideration in cardiovascular medicine due to the aging population. Not only AMI, but frailty also related to increased mortality in congestive heart failure, cardiac surgery as well as transcatheter aortic valve implantation. On the other hand, the Women’s Health Initiative Study showed that patients with coronary artery disease were more likely to develop de novo frailty. Thus, the American Heart Association and European Society of Cardiology have emphasized that assessment of frailty is crucial in managing elderly patients with AMI. Intervening frailty status of patients is might be as vital as preventing and managing AMI.

Advanced age is considered a risk factor of impaired outcomes in patients with AMI and also included in well-accepted risk scores such as the GRACE risk score and TIMI risk score. However, the elderly population is heterogeneous and under-represented in the derivation and validation cohorts. Interestingly, Hermans, et al. revealed that patients with at least one signs of frailty, according to VMS score had a nearly ten times higher risk of early mortality regardless of age and clinical characteristic. Hence, frailty assessment needs to be integrated with the prognostic score for better risk stratification, especially in the geriatric population.

The decision for invasive or conservative treatment of frail elder patients with AMI, especially NSTEMI, is frequently challenging to make. There is no recommendation or guideline specifically to AMI with frailty. Several studies observed increased bleeding risk only in frail patients who underwent catheterization, but not those treated with medical management. Besides, major bleeding may lead to other consequences such as transfusion reaction, cessation of anti-thrombotic therapy, prolonged hospitalization, and even death. Randomized control trails need to be per-
formed in frail elderly patients with AMI to determine if
invasive management could be favorable in this unique
population.

Despite a significant impact of frailty to AMI and other
cardiovascular diseases, there is a lack of consensus of vali-
dating frailty assessment tools. In our included studies, the
prevalence of frailty varied from 5.3% to 53.7%. Numerous
definition and assessment score were used. All of the in-
cluded frailty tools are consisted of at least one of five core
domains (slowness, weakness, low physical activity, ex-
haustration and shrinking). Comprehensive geriatric assess-
ment of every elderly individual before managing AMI is
not realistic for daily practice; therefore, adapting most
available measures according to resources and circumstance
may be reasonable. Nevertheless, frailty tool that easy to use,
reproducible and accurate is warranted not only for guiding
AMI management and excelling outcome but also leading to
further research on this critical field.

Frailty is not modifiable in an acute setting. So far, exer-
cise is the most promising intervention in a frail elderly
population[49,50]. Unfortunately, Flint, et al.[29] revealed that
patients in the frail group were less likely to be referred to
cardiac rehabilitation (CR) and even with a referral, they
less participated after AMI. Individualized designed of CR
program that is appropriate to older adults is imperative.
Other interventions to mitigate the risk of adverse outcome,
especially bleeding include radial access and avoid excess
dosing of anticoagulants.[51–54]

4.1 Limitation

We recognize that there are limitations to our meta-
analysis. First, studies with different methodology and
demographic data were included and thus might be potential
sources of heterogeneity, but the sensitivity analysis re-
vealed no significant alteration in the result. Second, we
could not perform the subgroup analysis comparing both
evency mortality, late mortality, and bleeding outcome be-
tween patients who underwent invasive strategies and
medical management. Finally, extracted data from included
studies were not always adjusted for other variables.

4.2 Conclusion

The value of frailty as a prognostic factor of AMI in the
geriatric population is well demonstrated. Frailty should be
included in prognostic tools of AMI. A standardized frailty
assessment tool that simple, accurate and reproducible is
needed not only for clinical practice but also for future re-
searches.

References

1 Fried LP, Tangen CM, Walston J, et al. Frailty in older adults:
56: M146–M156.
the cardiovascular care of older adults. J Am Coll Cardiol
3 Collard RM, Boter H, Schoevers RA, Oude Voshaar RC.
Prevalence of frailty in community-dwelling older persons: a
frailty in hospitalized older adults with significant coronary
5 Buckinx F, Rolland Y, Reginster JY, et al. Burden of frailty in
the elderly population: perspectives for a public health chal-
6 de Vries NM, Staal JB, van Ravensberg CD, et al. Outcome
instruments to measure frailty: a systematic review. Ageing
long-term mortality in elderly subjects with chronic heart
between preoperative frailty and outcomes following trans-
catheter aortic valve implantation: a systematic review and
meta-analysis. Eur Heart J Qual Care Clin Outcomes 2017; 3:
123–132.
9 Ekerstad N, Swahn E, Janzon M, et al. Frailty is indepen-
dently associated with 1-year mortality for elderly patients
with non-ST-segment elevation myocardial infarction. Eur J
10 Lupon J, Gonzalez B, Santaeugenia S, et al. Prognostic im-
lication of frailty and depressive symptoms in an outpatient
population with heart failure. Rev Esp Cardiol 2008; 61:
835–842.
11 O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/ AHA
guideline for the management of ST-elevation myocardial
infarction: executive summary: a report of the Ameri-
can College of Cardiology Foundation/American Heart Asso-
ciation Task Force on Practice Guidelines: developed in colla-
boration with the American College of Emergency Physic-
s and Society for Cardiovascular Angiography and Interven-
12 Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ ACC
Guideline for the Management of Patients with Non-ST-Eleva-
tion Acute Coronary Syndromes: a report of the Ameri-
can College of Cardiology/American Heart Association Task
Force on Practice Guidelines. J Am Coll Cardiol 2014; 23; 64:
e139–e228.
13 Stang A. Critical evaluation of the Newcastle-Ottawa scale for
the assessment of the quality of nonrandomized studies in
14 DerSimonian R, Laird N. Meta-analysis in clinical trials.
15 Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring

Journal of Geriatric Cardiology | jgc@jgc301.com; http://www.jgc301.com

http://www.jgc301.com; jgc@jgc301.com | Journal of Geriatric Cardiology

