Arp2/3- and Cofilin-coordinated Actin Dynamics Is Required for Insulin-mediated GLUT4 Translocation to the Surface of Muscle Cells

Tim Ting Chiu,† Nish Patel,* Alisa E. Shaw,‡ James R. Bamburg,‡ and Amira Klip*†

*Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8; †Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8; and ‡Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870

Submitted April 19, 2010; Revised August 16, 2010; Accepted August 17, 2010
Monitoring Editor: Laurent Blanchon

GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.

INTRODUCTION

A major function of insulin is to regulate glucose uptake by muscle and fat tissues. This is achieved through a rapid and dynamic gain in glucose transporter-4 (GLUT4) at the cell surface (Huang and Czech, 2007; Larance et al., 2008; Zaid et al., 2008). Notably, this process becomes defective in insulin resistance states and type 2 diabetes (Klip et al., 1990; Zierath et al., 1996; Garvey et al., 1998; Mora and Pessin, 2002). To date, defects in insulin signaling and GLUT4 traffic per se have been invoked to underlie such defects (Krook et al., 2004; Patel et al., 2006).

Skeletal muscle is the primary site of insulin-dependent glucose disposal in vivo, and muscle cells in culture are useful to scrutinize principles of this response. L6 myoblasts, like further differentiated myotubes and skeletal muscle, mount robust responses of insulin signaling via insulin receptors, the insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and Akt (Ruderman et al., 1990; Tsakiridis et al., 1995; Thong et al., 2007). In muscle cells, signaling bifurcates downstream of PI3K into two independent arms characterized by phosphorylation of Akt (Wang et al., 1999) and GTP activation of the small GTPase Rac leading to actin remodeling (Khayat et al., 2000; JeBailey et al., 2004). The two pathways are independent of one another because neither Akt dominant-negative mutants (Wang et al., 1999) nor the Akt inhibitor Akti (A. Koshkina and A. Klip, unpublished data) prevent insulin-induced Rac activation or its consequent actin remodeling, and disruption of Rac via small inhibitory RNA (siRNA) fails to reduce Akt phosphorylation by insulin (JeBailey et al., 2007). Both signaling arms are required to elicit proper insulin-mediated GLUT4 translocation as perturbation of either one significantly reduces the GLUT4 response to insulin in muscle cells (Wang et al., 1999; JeBailey et al., 2007; Ishikura and Klip, 2008; Zaid et al., 2008).

Although much emphasis has been placed on the effectors downstream of Akt such as Akt substrate of 160 (AS160) and Rab GTPases (Sano et al., 2003; Miinea et al., 2005; Gonzalez and McGraw, 2006; Ishikura et al., 2007; Sano et al., 2007; Thong et al., 2007; Ishikura and Klip, 2008), the function of Rac remains less explored. Rac belongs to the small Rho GTPase family whose activity is regulated by GTP loading (Bernards and Settleman, 2004; Rossman et al., 2005). Insulin promotes GTP loading of Rac within the first 1–5 min of stimulation (JeBailey et al., 2004; Ishikura et al., 2008). Once activated, Rac induces the reorganization of cortical actin
filaments (Khayat et al., 2000; JeBailey et al., 2007). This actin remodeling is a critical component in insulin-stimulated GLUT4 translocation because overexpression of a dominant negative Rac mutant (Khayat et al., 2000) or siRNA-mediated Rac knockdown (JeBailey et al., 2007) not only prevent actin remodeling but also markedly diminish the insulin-mediated recruitment of GLUT4 to the surface. A similar reduction in insulin response is observed upon preventing actin remodeling with inhibitors of actin polymerization such as latrunculin B (LB) and cytochalasin D (Tsakiridis et al., 1994; Khayat et al., 2000) or by precluding actin depolymerization with jasplakinolide (Tong et al., 2001). Altogether, these findings reveal the importance of peripheral actin reorganization in insulin-dependent GLUT4 translocation in muscle cells. However, the precise regulation of this dynamic actin change and the elements acting downstream of Rac are undefined. Moreover, a model that incorporates both actin polymerization and depolymerization, as required for dynamic remodeling, has not been proposed.

Here we test the hypothesis that insulin produces a dynamic regulation of actin remodeling involving cycles of branching and depolymerization. Using a well-established muscle cell model of L6GLUT4myc myoblasts displaying insulin-induced GLUT4myc exocytosis, we identify the Arp2/3 complex as a downstream effector of Rac that governs cortical actin polymerization and also identify cofilin as a regulator promoting actin filament depolymerization. Cofilin dephosphorylation requires prior buildup of polymerized actin driven by Arp2/3. Therefore, an integrated mode for active actin cycling is proposed that enables insulin-mediated GLUT4 translocation/insertion into the muscle cell membrane.

MATERIALS AND METHODS

Reagents, siRNA, and Constructs

Polyclonal anti-myc antibody (A-14) and anti-p34-ARC were from Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal anti-phosphorylated cofilin-1, anti-Akt, anti-phosphorylated Akt (Ser473), and anti-phosphorylated LIMK1 antibodies were from Cell Signaling Technology (Beverly, MA). Polyclonal anti-Arp3 was from BD Biosciences (San Jose, CA). Affinity-purified anti-Arp3 and cofilin-1 were as described (Meberg et al., 1994; Khayat et al., 2000) or by precluding actin depolymerization with jasplakinolide (Tong et al., 2001). Altogether, these findings reveal the importance of peripheral actin reorganization in insulin-dependent GLUT4 translocation in muscle cells. However, the precise regulation of this dynamic actin change and the elements acting downstream of Rac are undefined. Moreover, a model that incorporates both actin polymerization and depolymerization, as required for dynamic remodeling, has not been proposed.

Here we test the hypothesis that insulin produces a dynamic regulation of actin remodeling involving cycles of branching and depolymerization. Using a well-established muscle cell model of L6GLUT4myc myoblasts displaying insulin-induced GLUT4myc exocytosis, we identify the Arp2/3 complex as a downstream effector of Rac that governs cortical actin polymerization and also identify cofilin as a regulator promoting actin filament depolymerization. Cofilin dephosphorylation requires prior buildup of polymerized actin driven by Arp2/3. Therefore, an integrated mode for active actin cycling is proposed that enables insulin-mediated GLUT4 translocation/insertion into the muscle cell membrane.

Cell Lysates and Immunoblotting

After treatments, cells were washed quickly with cold phosphate-buffered saline (PBS) and lysed with 1% Triton X-100 in PBS. Lysates were passed through a 20-μm nylon mesh filter to remove cellular debris. After treatments, cells were washed quickly with cold phosphate-buffered saline (PBS) and lysed with 1% Triton X-100 in PBS. Lysates were passed through a 20-μm nylon mesh filter to remove cellular debris.

Statistical Analysis

Statistical analyses were carried out using Prism 4.0 software (GraphPad Software, San Diego, CA). Groups were compared using one-way ANOVA analysis. p < 0.05 was considered statistically significant.

Cell-Surface GLUT4myc detection by Immunofluorescence Microscopy

Immunofluorescent detection of surface GLUT4myc in adhered L6 myoblasts was performed as previously described (Talior-Volodarsky et al., 2008). After 3-h serum starvation, cells were stimulated with and without 100 nM insulin for 10 min at 37°C. Cells were then washed twice with cold PBS, fixed with 3% (vol/vol) paraformaldehyde, and blocked with 5% (vol/vol) milk. Surface GLUT4myc was stained by incubating anti-myc primary antibody followed by a biotinylated secondary antibody (Vector). For staining of surface GLUT4myc and intracellular filamentous (F)-actin, surface GLUT4myc was labeled first before membrane permeabilization for subsequent F-actin staining. Fluorescent images were obtained with a Zeiss LSM 510 laser-scanning confocal microscope. Whole cells were scanned along the z-axis, and a single composite image (collapsed z projection) of the optical sections per cell was generated using LSM5 Image software. Pixel intensity of single cells (>30 cells per condition) was quantified using ImageJ software (http://rsb.info.nih.gov/ij/). Surface GLUT4myc was also detected by immunofluorescence in intact and serum-starved myoblasts prepared as described previously (Randhawa et al., 2008; Talior-Volodarsky et al., 2008).

Detection and Quantification of Actin Remodeling/Polymerized Dorsal Actin

After treatment with or without insulin for 10 min at 37°C, adhered or rounded-up L6 myoblasts were fixed, permeabilized with 0.1% Triton X-100 in PBS for 3 min, blocked with 5% milk, and stained with rhodamine-phalloidin for F-actin. Cells were imaged by Zeiss LSM 510 laser scanning confocal microscope. Acquisition parameters were adjusted to minimize signal saturation. To quantify actin remodeling, the area of the T-shaped optical slices of basal and insulin-stimulated cells was analyzed with ImageJ software (>30 cells per condition). The optical slices quantified began from the outermost confocal fluorescent signal detected and continued inward toward the interior of the cell but skipped the last 2-3 optical sections dominated by actin stress fibers. By eliminating from the quantification the focal planes enriched in parallel arrays of stress fibers, which are still devoid of cross-bridged arrays of branched actin (vastly present in the top half of the cells toward the dorsal surface), we quantify cortical remodeling. The method may potentially underestimate this response, but not magnify it.

Cell Transfection

After treatment with or without insulin for 10 min at 37°C, adhered or rounded-up L6 myoblasts were fixed, permeabilized with 0.1% Triton X-100 in PBS for 3 min, blocked with 5% milk, and stained with rhodamine-phalloidin for F-actin. Cells were imaged by Zeiss LSM 510 laser scanning confocal microscope. Acquisition parameters were adjusted to minimize signal saturation. To quantify actin remodeling, the area of the T-shaped optical slices of basal and insulin-stimulated cells was analyzed with ImageJ software (>30 cells per condition). The optical slices quantified began from the outermost confocal fluorescent signal detected and continued inward toward the interior of the cell but skipped the last 2-3 optical sections dominated by actin stress fibers. By eliminating from the quantification the focal planes enriched in parallel arrays of stress fibers, which are still devoid of cross-bridged arrays of branched actin (vastly present in the top half of the cells toward the dorsal surface), we quantify cortical remodeling. The method may potentially underestimate this response, but not magnify it.
RESULTS

Arp2/3 Is Required for Insulin-mediated Actin Remodeling

We have previously reported that insulin causes marked actin polymerization at the cortical periphery of L6 myoblasts and myotubes that has a branched appearance when visualized by fluorescence (Khayat et al., 2000; Patel et al., 2003) and electron (Randhawa et al., 2008) microscopy and that manifests even in suspended myoblasts lacking stress fibers (JeBailey et al., 2004; Randhawa et al., 2008). The small GTPase Rac is a major regulator of such cortical actin remodeling (Khayat et al., 2000; JeBailey et al., 2004; JeBailey et al., 2007).

Known effectors of the Rho-family of small G proteins that modify actin filament organization in general include the branching complex Arp2/3 (Goley and Welch, 2006), capping/severing proteins such as gelsolin, and the severing protein coflin (Ono, 2007). Here we hypothesize that Arp2/3 acts directly downstream of Rac to initiate the insulin-dependent actin polymerization process. Arp2/3 is a seven-subunit complex consisting of Arp2, Arp3, p16, p20, p21, p34, and p40 (Goley and Welch, 2006). By transiently expressing the Arp3-GFP subunit into L6GLUT4myc myoblasts, we sought to examine changes in the localization of Arp2/3 after insulin stimulation. In the unstimulated state, myoblasts displayed normal cellular stress fibers and Arp3-GFP was mainly cytosolic (Figure 1A). When challenged with insulin, an actin meshwork formed at the periphery of the cells, and Arp3-GFP redistributed to the zone of remodeled actin, suggesting its involvement at this region (Figure 1A).

To functionally establish the role of Arp2/3 in insulin-responsive actin remodeling, we interfered with the complex by silencing expression of its Arp3 subunit via siRNA-mediated knockdown. Significant down-regulation of Arp3 (by 77%) was achieved in siArp3-treated cells compared with cells treated with a nonrelated siRNA (siNR) sequence (Figure 1B). In Arp3 knockdown cells, the aspect and density of basal-state stress fibers remained unchanged. However, the insulin-induced actin remodeling was lost (Figure 1C). Quantitative analysis of remodeled actin revealed a 70% decrease in dorsal actin remodeling upon Arp3 down-regulation compared with control siNR-treated cells (Figure 1D). This deleterious effect was further validated by inhibiting the function of Arp2/3 via down-regulation of another Arp2/3 subunit, p34. As with siArp3, siRNA-mediated knockdown of p34 (sip34) by 60% also prevented the formation of remodeled actin structures at the cell periphery upon insulin stimulation (Figure 2, A and B).

To illustrate that Arp2/3 functions downstream of Rac to generate the dorsal actin meshwork, we took advantage of a constitutively active Rac-GFP mutant (CA-Rac-GFP) that remodels actin without insulin stimulation when transfected into myoblasts. In the control of siNR-transfected cells expressing CA-Rac-GFP, distinctive actin remodeling was observed, compared with neighboring nontransfected cells. However, CA-Rac-GFP failed to elicit actin remodeling after Arp3 knockdown (Figure S1A). This result suggests that Arp2/3 is a major effector downstream of Rac governing actin remodeling in muscle cells.

Depletion of Arp2/3 Reduces Insulin-mediated GLUT4 Gain on the Cell Surface

Because inhibition of Arp2/3 function averted actin remodeling, we explored its effect on insulin-responsive GLUT4 translocation. After siRNA-mediated disruption of Arp2/3 function, costaining of surface GLUT4myc and intracellular F-actin was applied to identify cells lacking the insulin-induced actin rearrangement and their corresponding GLUT4myc levels on the plasma membrane. Surface GLUT4myc showed the typical speckled distribution (Patel et al., 2003; Thong et al., 2007) that may suggest insertion into hot spots. These may represent specific plasma membrane domains or may correspond to
ruffled areas supported by the remodeled actin, consistent with the predominant localization of GLUT4myc in ruffles determined by immunogold labeling and scanning electron microscopy (Tong et al., 2001). Down-regulation of Arp3 did not alter the surface level of GLUT4myc in the basal state, compared with control cells treated with siNR (Figure 1, C and E). In contrast, siRNA to Arp3 not only prevented insulin-mediated peripheral actin remodeling but also significantly decreased the amount of GLUT4myc at the plasma membrane (Figure 1C). Quantification of surface GLUT4myc indicated a 44% inhibition in GLUT4 translocation after the down-regulation of Arp3 (Figure 1E). Furthermore, a strong reduction (60%) was achieved by knocking down the p34 subunit of Arp2/3 (Figure 2, B and D). Neither Arp3 nor p34 knockdown altered the overall insulin-stimulated Akt phosphorylation (Figure S1B), suggesting that the Akt signaling arm of insulin action remained intact.

To demonstrate the specificity of Arp2/3 in GLUT4 translocation, we rescued Arp2/3 expression by transfecting D. discoideum Arp3-GFP into siArp3-treated cells. Under this setting, insulin-stimulated actin remodeling was restored (Figure S2, A and B), and the deleterious effect of Arp3 down-regulation on insulin-mediated GLUT4 translocation was alleviated (Figure S2C). More importantly, expression of *Dictyostelium* Arp3-GFP alone did not change the basal actin filament morphology or surface GLUT4 in unstimulated cells, indicating that Arp2/3 only exerts its functional action upon insulin stimulation.

The fact that depletion of Arp2/3 components only altered the insulin-dependent component of surface GLUT4 but did not change the basal levels of the transporters at the cell membrane suggests that the constitutive recycling of GLUT4 does not require Arp2/3 input. To establish if the effect of Arp2/3 interference is selective to GLUT4 traffic, we examined the effect of depletion of p34 of the Arp2/3 complex on Tf recycling, which depends on endosome recycling. As shown later in Figure 6, Tf recycling in either basal or insulin-stimulated state was similar in cells treated with siRNA to p34 as in siNR-treated cells, implying that the inhibition of Arp2/3 did not affect the traffic of Tf.

The above results indicate that Arp2/3 is required for cortical actin remodeling and GLUT4 translocation including full exposure at the cell surface. To ascertain that the effect of Arp2/3 knockdown is independent of possible changes in actin stress fibers, we analyzed suspended myoblasts devoid of stress fibers. In this rounded-up configuration, myoblasts show actin filaments exclusively at the cell periphery (JeBailey et al., 2004; Randhawa et al., 2008; Talior-Volodarsky et al., 2008). Myoblasts treated with siRNA to p34 of the Arp2/3 complex or with siNR were suspended, stimulated with insulin, and analyzed for actin remodeling and surface GLUT4 levels. Although siNR-treated cells
showed the habitual cortical actin arborizations and gain in surface GLUT4 in response to insulin, sip34 treatment markedly abolished both responses to insulin (Figure 2E). These results suggest that it is the cortical actin structures regulated by Arp2/3 that are required for GLUT4 translocation in response to the hormone.

**Insulin Causes Cofilin Dephosphorylation That Depends on Slingshot**

Actin dynamics is regulated by concerted actin polymerization and depolymerization. In fact, a spatial/temporal burst in actin polymerization and branching, as caused by Arp2/3, requires available sources of actin monomer, which are typically provided by the continuous depolymerization of actin filaments (Pollard, 2007; Insall and Machesky, 2009). Hence, we sought to identify molecules in the actin-depolymerization pathway that may respond to insulin, which would contribute to the balance of actin dynamics. ADF/cofilin are highly related, actin-severing, and monomer-sequestering proteins whose activity is mainly regulated by the phosphorylation status of Ser3 (Agnew et al., 1995; Moriyama et al., 1996). Phosphorylation and dephosphorylation of ADF/cofilin leads to its inactivation and activation, respectively. Insulin elicited ADF/cofilin dephosphorylation in cells that do not represent metabolically determining tissues and do not express GLUT4 (HT4 neuronal and 293T cells; Meberg et al., 1998; Nishita et al., 2004), but the function of cofilin in these cells and the metabolic consequences of its activation were not investigated. We therefore examined whether insulin stimulation in muscle cells alters the ADF/cofilin phosphorylation status and its possible contribution to GLUT4 traffic. We utilized a rabbit antibody that recognizes both ADF and cofilin-1 and their phosphorylated forms to an equal extent and cofilin-2 to a somewhat lesser extent (Shaw et al., 2004). By two-dimensional (2D) gel electrophoresis of L6 cell lysates, we calculated the molar ratio of cofilin to ADF in L6 myoblasts to be 7:1. The major cofilin isofrom present is cofilin-1 with a faint immunoreactive spot probably representing cofilin-2 focusing at the more acidic position identified for mouse cofilin-2 (Ono et al., 1994). This 2D immunoblotting approach also revealed that ~9% of the cellular content of cofilin is phosphorylated (inactive) in unstimulated cells, and insulin caused a fourfold decrease in the phosphorylation of this protein (Figure 3). By SDS-PAGE and immunoblotting with an antibody selective to cofilin (1 and 2) phosphorylated on p-Ser3, phosphorylation of cofilin in unstimulated cells was also ascertained (Figure 4A). On insulin stimulation, a reduction in the level of phosphorylated cofilin (P-cofilin) was observed without changes in total cofilin, indicating a shift to its active state (Figure 4A). This was evident as early as 3 min and was most significant 10 min after insulin treatment (Figure 4B). Inhibiting PI3K with wortmannin prevented cofilin dephosphorylation in response to insulin (not shown), paralleling the response in 293T cells (Nishita et al., 2004).

The balance of cofilin phosphorylation/dephosphorylation is primarily achieved by the action of kinases LIM kinase (LIMK) and testicular kinase and of the phosphatases slingshot (SSH1), chronophin (Van Troyes et al., 2008), and to some degree PP1/PP2A (Meberg et al., 1998). Because net dephosphorylation of cofilin was observed after insulin stimulation, we examined first the participation of the phosphatases in this response. Treatment of myoblasts with SSH1 siRNA reduced the expression of SSH1 by 73% (Figure 4C). Down-regulation of this phosphatase notably prevented the dephosphorylation of cofilin evoked by insulin compared with the degree observed in NR siRNA controls (Figure 4C).

This revealed that insulin signals primarily via SSH1 to dephosphorylate cofilin, which would lead to cofilin activation. Regarding the kinases mediating cofilin phosphorylation, LIMK is attractive because it is typically activated by phosphorylation via Rac-dependent, p21-activated-kinase (Edwards et al., 1999). Although LIMK1 knockdown did not increase the steady-state phosphorylation of cofilin in the basal state, LIMK1 knockdown potentiated cofilin dephosphorylation in response to insulin (Figure S3). This observation suggests that, in response to insulin, LIMK1 may partially restore phosphorylation of cofilin, which is however more dominantly dephosphorylated by SSH1.

**Arp2/3-mediated Actin Remodeling Signals to Insulin-stimulated Cofilin Dephosphorylation**

The net effect of cofilin dephosphorylation induced by insulin suggests the activity of SSH1 outweighed that of LIMK1. One of the possible explanations could be a surge in the phosphatase activity of SSH1 after insulin stimulation. Indeed, adding F-actin to purified SSH1 markedly augments its phosphatase activity (Nagata-Ohashi et al., 2004), but the function of SSH1 in these cells and the metabolic consequences of its activation were not investigated. We therefore examined whether insulin stimulation in muscle cells alters the ADF/cofilin phosphorylation status and its possible contribution to GLUT4 traffic. We utilized a rabbit antibody that recognizes both ADF and cofilin-1 and their phosphorylated forms to an equal extent and cofilin-2 to a somewhat lesser extent (Shaw et al., 2004). By two-dimensional (2D) gel electrophoresis of L6 cell lysates, we calculated the molar ratio of cofilin to ADF in L6 myoblasts to be 7:1. The major cofilin isofrom present is cofilin-1 with a faint immunoreactive spot probably representing cofilin-2 focusing at the more acidic position identified for mouse cofilin-2 (Ono et al., 1994). This 2D immunoblotting approach also revealed that ~9% of the cellular content of cofilin is phosphorylated (inactive) in unstimulated cells, and insulin caused a fourfold decrease in the phosphorylation of this protein (Figure 3). By SDS-PAGE and immunoblotting with an antibody selective to cofilin (1 and 2) phosphorylated on p-Ser3, phosphorylation of cofilin in unstimulated cells was also ascertained (Figure 4A). On insulin stimulation, a reduction in the level of phosphorylated cofilin (P-cofilin) was observed without changes in total cofilin, indicating a shift to its active state (Figure 4A). This was evident as early as 3 min and was most significant 10 min after insulin treatment (Figure 4B). Inhibiting PI3K with wortmannin prevented cofilin dephosphorylation in response to insulin (not shown), paralleling the response in 293T cells (Nishita et al., 2004).

The balance of cofilin phosphorylation/dephosphorylation is primarily achieved by the action of kinases LIM kinase (LIMK) and testicular kinase and of the phosphatases slingshot (SSH1), chronophin (Van Troyes et al., 2008), and to some degree PP1/PP2A (Meberg et al., 1998). Because net dephosphorylation of cofilin was observed after insulin stimulation, we examined first the participation of the phosphatases in this response. Treatment of myoblasts with SSH1 siRNA reduced the expression of SSH1 by 73% (Figure 4C). Down-regulation of this phosphatase notably prevented the dephosphorylation of cofilin evoked by insulin compared with the degree observed in NR siRNA controls (Figure 4C).
activity of SSH1 to generate the net dephosphorylation of cofilin after insulin stimulation in muscle cells. Cofilin Knockdown Promotes F-Actin Accumulation and Decreases Insulin-mediated GLUT4 Translocation

Given that insulin activates cofilin via its dephosphorylation, it became intriguing to explore the functional implication that cofilin has on the dynamics of insulin-responsive actin remodeling. Immunofluorescence detection of endogenous cofilin in myoblasts revealed its redistribution from the cytosol to the peripheral zone where actin remodels upon insulin stimulation (Figure 5A). The localization of the phosphorylated form was determined using an antibody to phosphorylated ADF/cofilin (P-AC) that is compatible with immunofluorescence approaches. Costaining of total cofilin and phosphorylated ADF/cofilin (P-AC) revealed that insulin stimulation decreased the ratio of P-AC/cofilin at the cell periphery/remodeled actin (by 31%, $p < 0.05$), indicating that cofilin undergoes dephosphorylation in response to the hormone at this region of the cell (Figure 5A). Total lysates were immunoblotted for P-cofilin, cofilin, P-Akt, and actin (loading control). Representative blots of four experiments are shown. (B) Quantification of insulin-dependent cofilin dephosphorylation expressed as P-Cofilin/Cofilin ratio relative to time 0 ($n = 4$, mean ± SE, $p < 0.05$). (C) Lysates from myoblasts treated with SSH1 siRNA (siSSH1) were prepared to determine the knockdown effect on SSH1 and its contribution toward insulin-induced cofilin dephosphorylation and Akt phosphorylation by immunoblotting for P-cofilin and P-Akt (Ser-473). Myoblasts were (D) transfected with p34 siRNA or (E) subjected to 250 nM LB treatment for 30 min, and the effect of insulin on P-Cofilin was assessed. Representative blots of more than three independent experiments are shown.

Figure 4. Insulin stimulation in L6GLUT4myc muscle cells causes dephosphorylation of cofilin that is dependent on SSH1. L6GLUT4myc myoblasts were serum-starved for 3 h before insulin stimulation (100 nM) for the indicated time periods. (A) Total lysates immunoblotted for P-cofilin, cofilin, P-Akt, and actin (loading control). Representative blots of four experiments are shown. (B) Quantification of insulin-dependent cofilin dephosphorylation expressed as P-Cofilin/Cofilin ratio relative to time 0 ($n = 4$, mean ± SE, $p < 0.05$). (C) Lysates from myoblasts treated with SSH1 siRNA (siSSH1) were prepared to determine the knockdown effect on SSH1 and its contribution toward insulin-induced cofilin dephosphorylation and Akt phosphorylation by immunoblotting for P-cofilin and P-Akt (Ser-473). Myoblasts were (D) transfected with p34 siRNA or (E) subjected to 250 nM LB treatment for 30 min, and the effect of insulin on P-Cofilin was assessed. Representative blots of more than three independent experiments are shown.

Figure 5. Cofilin localizes with insulin-induced remodeled actin and down-regulation of cofilin increases F-actin aggregates and reduces insulin-induced GLUT4 translocation. (A) L6GLUT4myc myoblasts were serum-starved for 3 h and stimulated with 100 nM insulin for 10 min, followed by labeling with rhodamine-phalloidin for F-actin and cofilin-specific antibody for endogenous cofilin. Representative images of three independent experiments are shown. (B) Total lysates from myoblasts transfected with NR or cofilin siRNA were prepared and immunoblotted for cofilin and actinin-1 (loading control). Representative blots of five independent experiments are shown. (C) Myoblasts with siNR or siCofilin were treated with/without insulin followed by costaining of surface GLUT4myc and F-actin. Representative images of four independent experiments are shown. Bars, 10 μm. (D) Total lysates from myoblasts transfected with NR or cofilin siRNA were prepared and immunoblotted for cofilin and actinin-1 (loading control). Representative blots of five independent experiments are shown. (C) Myoblasts with siNR or siCofilin were treated with/without insulin followed by costaining of surface GLUT4myc and F-actin. Representative images of four independent experiments are shown. Bars, 10 μm. (D) Quantification of dorsal polymerized actin relative to NR basal after cofilin knockdown (mean ± SE). (E) Quantification of fold increases in surface GLUT4myc relative to NR basal in NR and siCofilin conditions (mean ± SE, $p < 0.05$).
2D immunoblot data showing that coflin 1 is the predominant isoform expressed and phosphorylated in L6 myoblasts. As expected from existing literatures (Nishita et al., 2005; Sidani et al., 2007), down-regulation of coflin caused a massive increase in the level of random F-actin aggregates in the basal state, and this morphological change was scored via polymerized dorsal actin assay (Figure 5, C and D). When challenged with insulin, these cells displayed a further elevation in polymerized actin (Figure 5D), suggesting that potentially there were still some available actin monomers to respond to the actin polymerization cues evoked by insulin. However, this remodeled actin was morphologically more diverse and was not confined to the cell periphery compared with that in NR control cells stimulated by insulin (Figure 5C).

Although insulin-dependent actin polymerization continued upon down-regulation of coflin, the visually excessive/abnormal remodeling suggests that the dynamics of F-actin at the zone of remodeling may have been impeded. We therefore explored whether under these conditions the insulin-dependent GLUT4 translocation was affected. As shown in Figure 5C and E, coflin knockdown caused a major reduction (66%) in insulin-dependent gain in surface GLUT4, yet Tf recycling, in either absence or presence of insulin, was not significantly disrupted (Figure 6). This observation allowed us to test whether coflin reexpression restores normal GLUT4 translocation and if such restoration would be dependent on the phosphorylation status of coflin. Transfecting Xenopus coflin-WT-GFP into myoblasts with down-regulated coflin expression restored the normal F-actin pattern in the basal state by eliminating the excessive F-actin accumulation (Figure 7, A and B). Moreover, such reexpression also alleviated the defect in insulin-dependent GLUT4 translocation (Figure 7C). Strikingly, neither the recovery of actin dynamics nor that of GLUT4 translocation was achieved when the inactive coflin-S3E-GFP mutant was transfected into myoblasts with down-regulated coflin. This mutant is unable to sever actin filaments. Overall, these results argue that the insulin-induced increase in the severing function of coflin is critical for the dynamics of actin remodeling, which in turn allows proper insulin-stimulated GLUT4 translocation to proceed.

**DISCUSSION**

Because muscle is the major insulin-regulated storage of blood glucose, it is imperative to define the signaling events that promote the gain of GLUT4 at the surface to increase glucose uptake into this tissue. L6GLUT4myc myoblasts have been a bona fide cell culture model to study GLUT4 traffic in a muscle cell context (Ueyama et al., 1999; Wang et al., 1999; Khayat et al., 2000; Tong et al., 2001; JeBailey et al., 2004, 2007; Thong et al., 2007; Ishikura and Klip, 2008). In these cells, we found that in parallel to the well-established Akt-AS160 pathway (Thong et al., 2007), insulin induces a rapid activation of the small GTPase Rac that is PI3K-dependent and leads to cortical actin remodeling (Khayat et al., 2000; Tong et al., 2001; JeBailey et al., 2004, 2007). However, as with any cell culture system, lessons learned from L6 muscle cells should eventually be tested in the mature tissue. In this regard, insulin-dependent reorganization of nonsarcemic actin and Rac activation were recently confirmed in rodent skeletal muscles (Brozinick et al., 2004; Ueda et al., 2010; Hansen et al., 2010). Rac activation and actin remodeling fail in several models of insulin resistance, without detectable defects in upstream IRS-1 phosphorylation or PI3K activation (Tong et al., 2001; McCarthy et al., 2006; JeBailey et al., 2007). Here we identify Arp2/3 as the effector downstream of Rac that promotes formation of remodeled actin, whereas the activity of coflin maintains the active turnover of actin in the remodeling zone. Disruption of either protein yielded abnormal actin remodeling and subsequent inhibition in insulin-mediated GLUT4 translocation (Figures 1C, 2B, and 5C).

**Insulin Induces Concerted Actin Branching and Severing**

F-actin contributes to maintaining structural integrity, promoting cellular migration, and aiding in vesicle traffic. To be functional, these cellular processes depend on the dynamic nature of actin regulation. Cytoplasmic actin exists as monomers and oligomerized F-actin. Uncapped F-actin undergoes constant polymerization at the barbed ends, whereas depolymerization occurs at the point ends to regenerate a steady pool of monomeric actin for further rounds of polymerization (Pollard, 2007). Such dynamic turnover is tightly controlled by actin-modifying proteins including actin-nucleating and -severing proteins (Pollard, 2007). Arp2/3 initiates branching at 70° on existing actin filaments and is firmly established in the Rac-dependent formation of lamellipodia in migrating cells (Ridley et al., 1992; Miki et al., 2000). Here we report that Arp2/3 contributes to the Rac-mediated, cortical actin remodeling after insulin stimulation. Downregulation of Arp2/3 through siRNA against its Arp3 or p34 subunits abrogated insulin-induced actin remodeling, suggesting that Arp2/3-initiated actin polymerization is responsible for the genesis of dorsally remodeled actin in muscle cells (Figures 1C and 2B). Overexpressing Arp3-GFP
or cofilin-S3E-GFP. After serum starvation, F-actin was labeled with rhodamine-phalloidin in the basal state to detect changes in actin morphology.

(A) L6GLUT4myc myoblasts transfected with NR or cofilin siRNA were further transfected with cDNA to either GFP as control, cofilin-WT-GFP, or cofilin-S3E-GFP. After serum starvation, F-actin was labeled with rhodamine-phalloidin in the basal state to detect changes in actin morphology. Representative images of six independent experiments are shown. Bars, 20 μm. (B) Quantification of F-actin aggregates relative to NR+GFP basal (mean ± SE). (C) Surface GLUT4myc levels in siCofilin-treated myoblasts cotransfected with cofilin-WT or S3E mutant expression in siCofilin myoblasts were measured by fluorescent detection of single cells and are presented as fold increases in surface GLUT4myc relative to NR basal are also shown (mean ± SE, n = 6, *p < 0.05).

Figure 7. Expression of Xenopus cofilin-WT-GFP, but not cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation. (A) L6GLUT4myc myoblasts transfected with NR, cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation.

(A) L6GLUT4myc myoblasts transfected with NR or cofilin siRNA were further transfected with cDNA to either GFP as control, cofilin-WT-GFP, or cofilin-S3E-GFP. After serum starvation, F-actin was labeled with rhodamine-phalloidin in the basal state to detect changes in actin morphology. Representative images of six independent experiments are shown. Bars, 20 μm. (B) Quantification of F-actin aggregates relative to NR+GFP basal (mean ± SE). (C) Surface GLUT4myc levels in siCofilin-treated myoblasts cotransfected with cofilin-WT or S3E mutant expression in siCofilin myoblasts were measured by fluorescent detection of single cells and are presented as fold increases in surface GLUT4myc relative to NR basal are also shown (mean ± SE, n = 6, *p < 0.05).

Figure 7. Expression of Xenopus cofilin-WT-GFP, but not cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation. (A) L6GLUT4myc myoblasts transfected with NR, cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation.

(A) L6GLUT4myc myoblasts transfected with NR or cofilin siRNA were further transfected with cDNA to either GFP as control, cofilin-WT-GFP, or cofilin-S3E-GFP. After serum starvation, F-actin was labeled with rhodamine-phalloidin in the basal state to detect changes in actin morphology. Representative images of six independent experiments are shown. Bars, 20 μm. (B) Quantification of F-actin aggregates relative to NR+GFP basal (mean ± SE). (C) Surface GLUT4myc levels in siCofilin-treated myoblasts cotransfected with cofilin-WT or S3E mutant expression in siCofilin myoblasts were measured by fluorescent detection of single cells and are presented as fold increases in surface GLUT4myc relative to NR basal are also shown (mean ± SE, n = 6, *p < 0.05).

Figure 7. Expression of Xenopus cofilin-WT-GFP, but not cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation. (A) L6GLUT4myc myoblasts transfected with NR, cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation.

(A) L6GLUT4myc myoblasts transfected with NR or cofilin siRNA were further transfected with cDNA to either GFP as control, cofilin-WT-GFP, or cofilin-S3E-GFP. After serum starvation, F-actin was labeled with rhodamine-phalloidin in the basal state to detect changes in actin morphology. Representative images of six independent experiments are shown. Bars, 20 μm. (B) Quantification of F-actin aggregates relative to NR+GFP basal (mean ± SE). (C) Surface GLUT4myc levels in siCofilin-treated myoblasts cotransfected with cofilin-WT or S3E mutant expression in siCofilin myoblasts were measured by fluorescent detection of single cells and are presented as fold increases in surface GLUT4myc relative to NR basal are also shown (mean ± SE, n = 6, *p < 0.05).

Figure 7. Expression of Xenopus cofilin-WT-GFP, but not cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation. (A) L6GLUT4myc myoblasts transfected with NR, cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation.

(A) L6GLUT4myc myoblasts transfected with NR or cofilin siRNA were further transfected with cDNA to either GFP as control, cofilin-WT-GFP, or cofilin-S3E-GFP. After serum starvation, F-actin was labeled with rhodamine-phalloidin in the basal state to detect changes in actin morphology. Representative images of six independent experiments are shown. Bars, 20 μm. (B) Quantification of F-actin aggregates relative to NR+GFP basal (mean ± SE). (C) Surface GLUT4myc levels in siCofilin-treated myoblasts cotransfected with cofilin-WT or S3E mutant expression in siCofilin myoblasts were measured by fluorescent detection of single cells and are presented as fold increases in surface GLUT4myc relative to NR basal are also shown (mean ± SE, n = 6, *p < 0.05).

Figure 7. Expression of Xenopus cofilin-WT-GFP, but not cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation. (A) L6GLUT4myc myoblasts transfected with NR, cofilin-S3E-GFP mutant, restores normal F-actin morphology and GLUT4 translocation.

(A) L6GLUT4myc myoblasts transfected with NR or cofilin siRNA were further transfected with cDNA to either GFP as control, cofilin-WT-GFP, or cofilin-S3E-GFP. After serum starvation, F-actin was labeled with rhodamine-phalloidin in the basal state to detect changes in actin morphology. Representative images of six independent experiments are shown. Bars, 20 μm. (B) Quantification of F-actin aggregates relative to NR+GFP basal (mean ± SE). (C) Surface GLUT4myc levels in siCofilin-treated myoblasts cotransfected with cofilin-WT or S3E mutant expression in siCofilin myoblasts were measured by fluorescent detection of single cells and are presented as fold increases in surface GLUT4myc relative to NR basal are also shown (mean ± SE, n = 6, *p < 0.05).
and widely prevalent across the cell (Figure 5C), and this abnormality paralleled a reduction in insulin-dependent GLUT4 translocation (Figure 5E). This finding is reminiscent of the effect of jasplakinolide, an actin-stabilizing agent that causes excessive actin aggregates resembling those produced in cells with cofilin knockdown (Bubb et al., 1994). Likewise, jasplakinolide also interferes with GLUT4 vesicle traffic to the surface of muscle and adipose cells (Kanzaki and Pessin, 2001; Tong et al., 2001; Torok et al., 2004). All these considerations point to the need for a dynamic, concerted actin polymerization and severing induced by insulin and required for GLUT4 translocation. Perhaps the strongest support of this model is the fact that the defect in GLUT4 traffic caused by cofilin knockdown was rescued by expression of active cofilin-WT-GFP (which is amenable to phosphorylation and dephosphorylation) but could not be restored by the expression of inactive cofilin-S3E-GFP (Figure 7C). These results buttress the participation of insulin-induced, cofilin-mediated actin depolymerization to facilitate GLUT4 translocation. Further, although other interpretations may be possible, the results are consistent with cofilin dephosphorylation being required for insulin-dependent vesicle traffic.

Possible Mechanisms Whereby a Dynamic Actin Network Supports GLUT4 Traffic

The remodeled actin filaments may act as a tether for GLUT4 vesicles close to the plasma membrane, so that their subsequent docking/fusion can occur more readily (Khayat et al., 2000; Tong et al., 2001; Randhawa et al., 2008). Indeed, in insulin-stimulated muscle cells, GLUT4 vesicles accumulate within the cortical actin mesh visualized by electron microscopy (Tong et al., 2001; Randhawa et al., 2008). GLUT4 itself may tether to actin filaments via α-actinin-4 (Foster et al., 2006; Talior-Volodarsky et al., 2008), and indeed upon α-actinin-4 silencing, GLUT4 vesicles do not accumulate at the muscle cell periphery, and there is no insulin-dependent gain in surface GLUT4 (Talior-Volodarsky et al., 2008). Similarly, when actin filament remodeling is inhibited by expressing dominant negative Rac or by β, the enrichment of GLUT4 beneath the plasma membrane is lost, leading to the collapse of GLUT4 vesicles back to perinuclear regions (Randhawa et al., 2008). It is also plausible that the remodeled actin clusters insulin-signaling molecules close to GLUT4 vesicles near the plasma membrane (Patel et al., 2003). Although preventing actin remodeling by Arp2/3 knockdown did not reduce the overall level of P-Akt (Figure S1B), failure to accumulate phosphorylated Akt near the membrane may be a factor in the loss of insulin-induced GLUT4 translocation (Peyrollier et al., 2000; Oyster et al., 2005; Ng et al., 2008; Gonzalez and McGraw, 2009).

On the other hand, actin polymerization is abundant in cells with down-regulated cofilin, yet the resulting polymerized actin filaments seem morphologically distinct and disseminated across the cell (Figure 5C). We speculate that, in this case, the impaired gain in surface GLUT4 is due to vesicle retention in a static mesh that no longer undergoes severing. By analogy, in neuronal cells, thick patches of submembrane F-actin present at rest act as a barrier to inhibit basal exocytosis of neurotransmitters (Trifaro et al., 2008). In cells with down-regulated cofilin, the imbalance in dynamic cycles of actin depolymerization and branching may lead to uncoordinated growth of “static” actin filaments that could similarly turn into a barrier for GLUT4 vesicles, preventing them from gaining access to interaction with membrane SNAREs required for fusion (Randhawa et al., 2008).

We propose a model (Figure 8) whereby insulin stimulation leads to Arp2/3 activation downstream of Rac that initiates dorsal actin polymerization. The increase in polymerized actin stimulates the phosphatase activity of SSH1, leading to cofilin dephosphorylation and consequential increase in its severing action. Active actin depolymerization by cofilin can then free up actin monomers for Arp2/3-dependent polymerization and a dynamic actin turnover of insulin-stimulated actin remodeling is achieved. This dynamic status must be sustained to allow GLUT4 vesicle positioning and proper interaction with elements of the vesicle fusion machinery. This framework will allow testing the fidelity of its individual steps during insulin resistance and may reveal so far unsuspected steps that may be altered in this condition.

ACKNOWLEDGMENTS

We thank Sagar Dugani and Alex Wong for their participation in the early determination of cofilin dephosphorylation. This work was supported by Grant MO1 7307 from the Canadian Institutes of Health Research to A.K., and by National Institutes of Health Grant NS40371 to J.B. T.C. was supported by a studentship from the National Science and Engineering Research Council and the Research Training Centre from The Hospital for Sick Children. N.P. was supported by a doctoral research award from the Canadian Institutes of Health Research.

REFERENCES


Broening, T. J., Jr., Hawkins, E. D., Strawbridge, A. B., and Elmendorf, J. S. (2004). Disruption of cortical actin in skeletal muscle demonstrates an essen-

Vol. 21, October 15, 2010 3537
tial role of the cytoskeleton in glucose transporter translocation in insulin-sensitive tissues. J. Biol. Chem. 279, 40699–40706.


S. T. Chiu et al. (2002) Rac1 activation is a major requirement for GLUT4 translocation and glucose uptake in both muscle cells and mouse skeletal muscle. 70th American Diabetes Association Abstract 2463-PO, A645.

T. T. Chiu et al. (2002) Rac1 activation is a major requirement for GLUT4 translocation and glucose uptake in both muscle cells and mouse skeletal muscle. 70th American Diabetes Association Abstract 2463-PO, A645.


Vol. 21, October 15, 2010 3539

Actin Dynamics in GLUT4 Translocation