Predictive Value of 18F-Sodium Fluoride Positron Emission Tomography in Detecting High-Risk Coronary Artery Disease in Combination With Computed Tomography

Toshiro Kitagawa, MD, PhD; Hideya Yamamoto, MD, PhD; Yumiko Nakamoto, MD; Ko Sasaki, RT; Shinya Toshimitsu, RT; Fuminari Tatsugami, MD, PhD; Kazuo Awai, MD, PhD; Yutaka Hirokawa, MD, PhD; Yasuki Kihara, MD, PhD

Background—Application of 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) to coronary artery disease has attracted interest. We investigated the utility of 18F-NaF uptake for predicting coronary events and evaluated the combined use of coronary computed tomography (CT) angiography (CCTA) and 18F-NaF PET/CT in coronary artery disease risk assessment.

Methods and Results—This study included patients with ≥ 1 coronary atherosclerotic lesion detected on CCTA who underwent 18F-NaF PET/CT. High-risk plaque on CCTA was defined as plaque with low density (<30 Hounsfield units) and high remodeling index (>1.1). Focal 18F-NaF uptake in each lesion was quantified using the maximum tissue:background ratio (TBR$_{max}$), and maximum TBR$_{max}$ per patient (M-TBR$_{max}$) was determined. Thirty-two patients having a total of 112 analyzed lesions were followed for 2 years after 18F-NaF PET/CT scan, and 11 experienced coronary events (acute coronary syndrome and/or late coronary revascularization [after 3 months]). Patients with coronary events had higher M-TBR$_{max}$ than those without (1.39/C6 0.18 versus 1.19/C6 0.17, respectively; P = 0.0034). The optimal M-TBR$_{max}$ cutoff to predict coronary events was 1.28 (area under curve: 0.79). Patients with M-TBR$_{max} \geq 1.28$ had a higher risk of earlier coronary events than those with lower M-TBR$_{max}$ (P = 0.0062 by log-rank test). In patient-based (n = 41) and lesion-based (n = 143) analyses of CCTA findings that predicted higher coronary 18F-NaF uptake, the presence of high-risk plaque was a significant predictor of both M-TBR$_{max} \geq 1.28$ and TBR$_{max} \geq 1.28$.

Conclusions—18F-NaF PET/CT has the potential to detect high-risk coronary artery disease and individual coronary lesions and to predict future coronary events when combined with CCTA.

Clinical Trial Registration—URL: www.umin.ac.jp. Unique identifier: UMIN000013735. (J Am Heart Assoc. 2018;7:e010224. DOI: 10.1161/JAHA.118.010224.)

Key Words: coronary artery disease • coronary atherosclerosis • coronary computed tomography angiography • coronary event • positron emission tomography • sodium fluoride

The clinical utility of 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) has recently attracted interest in the field of cardiovascular medicine. Use of the technique to evaluate coronary arteries, major arteries, and aortic valves has been reported. The 18F-NaF tracer reacts with hydroxyapatite, which is the central component of vascular calcification and is laid down during the earliest and most active stages of mineralization. An association between osteogenesis and inflammation has been suggested in the development of atherosclerosis. Interestingly, a correlation has been reported between 18F-NaF uptake in coronary arteries and thoracic fat, which is considered a marker of inflammation and atherosclerotic cardiovascular risk. Thus, 18F-NaF PET may provide a novel strategy to biologically assess the risk of coronary atherosclerosis.

From the Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (T.K., H.Y., Y.N., Y.K.); Hiroshima Heiwa Clinic, Hiroshima, Japan (K.S., S.T., Y.H.); Department of Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan (F.T., K.A.).

Accompanying Tables S1 and S2 are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.118.010224

Correspondence to: Toshiro Kitagawa, MD, PhD, Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan. E-mail: toshirok@hiroshima-u.ac.jp

Received June 28, 2018; accepted August 29, 2018.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1161/JAHA.118.010224
Coronary computed tomography angiography (CCTA) is a main noninvasive imaging modality in the management of coronary artery disease (CAD). We previously reported the relationship between coronary plaque characteristics on CCTA and 18F-NaF uptake on PET.7 This relationship raises the possibility of developing a step-by-step approach to identify high-risk patients and coronary atherosclerotic lesions with CCTA and 18F-NaF PET/computed tomography (PET/CT) in clinical practice. However, information on the value of 18F-NaF PET/CT for CAD risk assessment is limited, and its prognostic value in predicting coronary events has not been evaluated. Intense 18F-NaF uptake localizes preferentially in culprit lesions of patients suffering from acute myocardial infarction (MI); however, no evidence to date shows the prognostic significance of 18F-NaF signals.

The aims of this study were to investigate the utility of 18F-NaF uptake for predicting coronary events and to evaluate the effective combined use of CCTA and 18F-NaF PET/CT in CAD risk assessment.

Methods

The data, analytic methods, and study materials will not be made available to other researchers for the purpose of reproducing the results or replicating the procedure.

This study consisted of 2 parts. First, we compared the prognostic value of 18F-NaF PET/CT versus CCTA for the prediction of future coronary events. Next, to develop a step-by-step approach using CCTA and 18F-NaF PET/CT, we evaluated how patient- and lesion-based CCTA findings related to 18F-NaF uptake. Our hospital’s ethics committee approved the study protocol; written informed consent was obtained from all patients. The protocol has been published in the Japan UMIN Clinical Trials Registry (identifier: UMIN000013735).

Patients

We prospectively recruited consecutive patients with known or suspected CAD who underwent both cardiac CT and 18F-NaF PET/CT between June 2014 and December 2017. All patients were referred for cardiac CT as a first step for the investigation and diagnosis of CAD. To be included in the 18F-NaF PET/CT study as a second step, patients had to have at least 1 coronary atherosclerotic lesion detected on CCTA in segments >2-mm in diameter according to the Society of Cardiovascular Computed Tomography’s 18-segment model6 and needed to agree to study participation. Exclusion criteria included the presence of cardiac arrhythmias (ie, atrial fibrillation, frequent paroxysmal premature beats), contraindications to iodinated contrast medium, unstable hemodynamic conditions, and ongoing MI or unstable angina (UA). Patients receiving dialysis, which would have been a potentially confounding factor in the analysis of coronary calcification, were also excluded. We collected clinical information, including coronary risk factors and a past history of MI or UA. History of MI or UA was determined as explained in our previous report.7

Image Acquisition and Analysis of CCTA (First Step)

All patients underwent cardiac CT with a 320-detector row CT scanner (Aquilion ONE; Canon Medical Systems), as described in our previous report.6 Briefly, a plain scan was taken to measure coronary calcium score (CCS) according to the Agatston method (slice thickness: 3.0 mm; maximum tube current: 270 mA; tube voltage: 120 kV). We acquired data sets for CCTA with the HeartNAVI system (collimation, 320×0.5 mm; tube current, 350–580 mA; tube voltage, 120 kV; Canon Medical Systems) with retrospective ECG gating. All reconstructed CT image data were transferred to an offline workstation (Advantage Workstation v4.2; GE Healthcare) for postprocessing and image analysis. The mean effective radiation dose according to the dose–length product was 8 mSv per patient, as in our previous study using the same scanner.10

Two blinded independent observers evaluated the coronary lumen for stenosis and the presence of atherosclerotic lesions in all coronary segments >2 mm in diameter on CCTA. The severity of stenosis was quantified by visual estimation into 5 categories (0%, 1–24%, 25–49%, 50–69%, and ≥70% stenosis).9

*Corresponding Author: Imasato Kitagawa, M.D., Ph.D., Department of Radiology, National Cardiovascular Center Research Institute, 5-1-1 Fujishiocho, Suita, Osaka 565-8565, Japan. E-mail: kitagawa.ima@ncc.go.jp

Aims of this study were to investigate the utility of 18F-sodium fluoride positron emission tomography/computed tomography (PET/CT) for CAD risk assessment. What Is New? Higher 18F-sodium fluoride uptake in coronary atherosclerotic lesions on positron emission tomography had a predictive value for 2-year coronary events (acute coronary syndrome and/or late coronary revascularization [after 3 months]) that was superior to the findings on coronary computed tomography angiography.

What Are the Clinical Implications?

18F-sodium fluoride positron emission tomography/computed tomography has the potential to detect high-risk coronary artery disease and individual coronary lesions and to predict future coronary events when combined with coronary computed tomography angiography.

Clinical Perspective

What Is New?
- Higher 18F-sodium fluoride uptake in coronary atherosclerotic lesions on positron emission tomography had a predictive value for 2-year coronary events (acute coronary syndrome and/or late coronary revascularization [after 3 months]) that was superior to the findings on coronary computed tomography angiography.
- The presence of high-risk plaque on coronary computed tomography angiography, defined as plaque with low density and high remodeling index, was a predictor of higher coronary 18F-sodium fluoride uptake in both patient- and lesion-based analyses.

What Are the Clinical Implications?
- 18F-sodium fluoride positron emission tomography/computed tomography has the potential to detect high-risk coronary artery disease and individual coronary lesions and to predict future coronary events when combined with coronary computed tomography angiography.
Lumen stenosis $\geq 70\%$ in any vessel or $\geq 50\%$ in the left main coronary artery was considered clinically obstructive. Coronary atherosclerotic lesions were divided into 3 plaque types:

- **calcified plaque**, defined as a structure on the vessel wall with CT density entirely above that of the contrast-enhanced coronary lumen or >130 Hounsfield units;
- **noncalcified plaque**, defined as an entirely low-density mass >1 mm2, located within the vessel wall and clearly distinguishable from the contrast-enhanced coronary lumen and surrounding pericardial tissue; and
- **partially calcified plaque** (PCP), defined as a mass containing both calcified and noncalcified plaque components.

For noncalcified plaque and PCP, each noncalcified component was evaluated for its minimum CT density and vascular remodeling index, as in our previous studies. High-risk plaque (HRP) was defined as noncalcified plaque or PCP with a low density (<30 Hounsfield units) and a high remodeling index (>1.1), which are high-risk characteristics resulting in acute coronary syndrome (ACS).

If the initial assessments of coronary stenosis, plaque type, and HRP differed between the 2 independent observers, agreement was reached by consensus.

Image Acquisition and Analysis of 18F-NaF PET/CT (Second Step)

Within 1 month after cardiac CT imaging, all patients underwent combined PET/CT imaging with a hybrid scanner (Discovery ST Elite-Performance, GE Healthcare), as in our previous report. Briefly, after administration of 18F-NaF (target dose: 370 MBq) and a subsequent 60-minute rest, a nonenhanced CT scan for attenuation correction and an ECG-gated emission PET scan of the thorax (25-minute acquisition using the 3-dimensional mode) were performed. Then an ECG-gated CT scan for fusion with PET images was performed with the same axial coverage (collimation: 16×0.625 mm; tube current: 250 mA; tube voltage: 120 kV). The PET component of the combined imaging system allows simultaneous acquisition of 47 transaxial PET images with an interslice spacing of 3.27 mm in 1 bed position. The PET data were reconstructed with an ordered-subset expectation maximization–based iterative reconstruction algorithm called VUE Point Plus (21 subsets and 2 iterations).

The reconstruction of PET data was performed in 8 multiple phases of the cardiac cycle, and the diastolic phase (62.5–75%) was used for analysis. The PET and CT images were fused and analyzed by 2 experienced, blinded readers with an offline workstation (Advantage Workstation v4.4; GE Healthcare). Each coronary atherosclerotic lesion was identified visually using locations of vessel calcium and branches in the previously scanned coronary CT images (noncontrast and CCTA images) as landmarks. For quantification of 18F-NaF uptake, an region of interest was drawn around each lesion on 3.27-mm axial slices just beyond the discernible adventitial border. The maximum standardized uptake value (decay-corrected tissue concentration of the tracer divided by the injected dose per body weight) was measured and divided by an averaged mean standardized uptake value in the blood pool, derived from 5 circular regions of interest positioned in the center of the superior vena cava. This was reported as a maximum tissue:background ratio (TBR$_\text{max}$) for a measure of 18F-NaF uptake in each coronary atherosclerotic lesion. When multiple coronary atherosclerotic lesions were identified in a patient, maximum TBR$_\text{max}$ per patient in any lesion (M-TBR$_\text{max}$) was determined for a patient-based analysis.

If the coronary atherosclerotic lesions detected on the previously scanned coronary CT images could not be identified confidently on the fused PET/CT images, such lesions were excluded from the analysis via 2-reader consensus.

Follow-up Study on Coronary Events

We followed the occurrence of coronary events after 18F-NaF PET/CT scan in a subgroup of the entire cohort. We recorded follow-up patient information by reviewing hospital records, performing telephone interviews with patients, and contacting primary physicians. All end points were determined by the consensus of 2 blinded reviewers. We focused on the end points of cardiac death; ACS, including nonfatal MI and UA requiring hospitalization; and late coronary revascularization performed \geq3 months after 18F-NaF PET/CT scan. Cardiac death was defined as death caused by acute MI, ventricular arrhythmia, or cardiogenic shock. The occurrence of MI and UA were determined on the basis of the standard criteria; culprit lesions were defined as lesions whose onset was associated with ECG changes or those with the most obstructive luminal narrowing on invasive coronary angiography. Late coronary revascularization was performed based on chest symptoms and/or positive myocardial ischemia findings on stress tests; the culprit lesion was determined by primary physicians blinded to CCTA and PET data, based on obstructive appearance (\geq75%) on invasive coronary angiography, and/or impaired coronary fractional flow reserve (\leq0.75).

Follow-up was censored at 2 years after 18F-NaF PET/CT scan or at the time of event occurrence.

Statistical Analysis

The CCS is expressed as the median value and interquartile range. Other measurements are expressed as mean \pm SD. The Student t test or Mann–Whitney U test was used to compare continuous variables between groups. Categorical variables are reported as numbers or proportions and were compared with the Pearson χ^2 test. M-TBR$_\text{max}$ was tested with a receiver operator characteristic curve to determine the optimal
M-TBR_{max} for predicting coronary events. Event rates were estimated with Kaplan–Meier curves and compared with a log-rank test. A Cox proportional hazards regression model was used to assess predictors of coronary events. Logistic regressions were used to examine the associations between CCTA findings and higher M-TBR_{max} or TBR_{max}. Interobserver variability of measured PET activities was determined by calculating the 95% confidence intervals (CIs) for mean differences. All analyses were performed with JMP 10.0.1 statistical software (SAS Institute). *P* values of <0.05 were considered statistically significant.

Results

Baseline Information

A total of 51 patients undergoing cardiac CT were screened for inclusion in the 18F-NaF PET/CT study. Nine patients declined participation in the study, and 1 had incomplete PET data. The remaining 41 patients were included in this study. The 2-year follow-up to monitor for coronary events was completed for 32 of the 41 patients. Table 1 shows the baseline clinical characteristics of the entire and follow-up cohorts. All characteristics, including the proportion of patients with MI or UA history or coronary stent implantation and level of CCS, were similar between the 2 cohorts.

In all 41 subjects, CCTA visualized a total of 158 coronary atherosclerotic lesions, 15 of which could not be identified on the fused PET/CT images. The reasons for the difficulty in identifying lesions on fused PET/CT images were motion artifact (n=5), overspill of activity from the sternal bone (n=2), and the lower spatial resolution of the fused PET/CT images compared with the coronary CT images (n=8). There were no lesions that were hampered by myocardial signal and excluded. As a result, a total of 143 coronary lesions (mean: 3.5±1.2 per patient; range: 2–7 lesions per patient) were analyzed with both CCTA and 18F-NaF PET/CT in the entire cohort. In the follow-up cohort, 112 lesions (mean: 3.5±1.2 per patient; range: 2–7 lesions per patient) were analyzed. We found good interobserver agreement for maximum standardized uptake value (mean difference: 0.02; 95% CI: −0.02 to 0.05), TBR_{max} (mean difference: 0.01; 95% CI: −0.03 to 0.06), and M-TBR_{max} (mean difference: 0.01; 95% CI, −0.06 to 0.07).

CCTA Findings, 18F-NaF Uptake, and Coronary Events

During the follow-up period, 11 patients (34%) experienced coronary events: 1 had MI, 3 had UA requiring hospitalization, and 7 underwent late coronary revascularization. There was no cardiac death. The number of analyzed coronary lesions per patient was higher among patients with coronary events than among those without such events (4.4±1.4 versus 3.0±0.9 lesions, respectively; *P*=0.0028).

Patients with coronary events were more likely than those without to have at least 1 site with obstructive stenosis on CCTA (82% versus 57% of patients, respectively; *P*=0.016; Figure 1A); however, this difference did not reach significance. The proportion of patients with at least 1 HRP on CCTA was similar between patients with coronary events and those without (73% versus 62% of patients, respectively; *P*=0.54; Figure 1B). In contrast, patients with coronary events had higher M-TBR_{max} on 18F-NaF PET/CT than those without (1.39±0.18 versus 1.19±0.17, respectively; *P*=0.0034). The optimal M-TBR_{max} cutoff to predict coronary events was 1.28 (area under the curve, 0.79), which had sensitivity of 73%, specificity of 76%, positive predictive value of 62%, and negative predictive value of 84% (Figure 1C and 1D). The Kaplan–Meier curves demonstrated that patients with M-TBR_{max} ≥1.28 had a higher risk of earlier coronary events than those with lower values (*P*=0.0062 by log-rank test); however, patients with obstructive stenosis (*P*=0.14) and those with HRP (*P*=0.58) did not (Figure 2). On multivariate Cox proportional analysis adjusted for age, sex, presence of coronary risk factors, and statin use, the presence of obstructive stenosis (hazard ratio: 9.4; 95% CI, 1.5–118.4; *P*=0.014) and M-TBR_{max} ≥1.28 (hazard ratio: 8.2; 95% CI, 1.4–79.2; *P*=0.020) remained significant predictors of the 2-year coronary events (Table S1).

In patients with coronary events, culprit lesions (n=11) were more likely than nonculprit lesions (n=37) to have obstructive stenosis (64% versus 32% of lesions, respectively;
and HRP (55% versus 11% of lesions, respectively; \(P=0.0017\)) on CCTA and had a higher TBR_{max} on \(^{18}\)F-NaF PET/CT \((1.35\pm0.21\) versus \(1.07\pm0.27\), respectively; \(P=0.0030\); Figure 3). Table 2 shows case information and individual CCTA and \(^{18}\)F-NaF PET/CT findings in culprit lesions. Note that all 4 culprit lesions without obstructive stenosis on CCTA had TBR_{max} \(\geq\)1.28 on \(^{18}\)F-NaF PET/CT; 5 culprit lesions did not correspond with M-TBR_{max}. Figures 4 through 6 show representative cases.

CCTA Findings and Higher M-TBR_{max}

To investigate the effective combination of CCTA and \(^{18}\)F-NaF PET/CT, we performed patient- and lesion-based analyses of the relationship between CCTA findings and the presence of TBR_{max} \(\geq\)1.28 in the entire cohort.

Among all 41 patients, 14 (34%) had M-TBR_{max} \(\geq\)1.28 on \(^{18}\)F-NaF PET/CT. Among the 31 patients without coronary stents in whom CCS could be measured, those with M-TBR_{max} \(\geq\)1.28 (n=11) had higher CCS than those with M-TBR_{max} <1.28 \((573\) [interquartile range: 207–2182] versus 143 [interquartile range: 19–530], respectively; \(P=0.043\); Figure 7A). A higher percentage of patients with M-TBR_{max} \(\geq\)1.28 than of those with lower M-TBR_{max} had at least 1 HRP on CCTA (86% versus 52% of patients, respectively; \(P=0.033\); Figure 7B); this group also had more HRPs per patient \((1.2\pm0.8\) versus 0.7\pm0.7, respectively; \(P=0.034\)). However, there was no difference between the groups in the frequency of obstructive stenosis on CCTA (64% versus 59%, respectively; \(P=0.75\); Figure 7C). On multivariate analysis adjusted for age, sex, presence of coronary risk factors, and statin use, the presence of HRP on CCTA remained a significant predictor.
of M-TBRmax ≥1.28 on 18F-NaF PET/CT (odds ratio: 10.3; 95% CI, 1.8–99.5; P=0.0081; Table S2).

Among all 143 lesions, 25 (17%) had TBRmax ≥1.28 on 18F-NaF PET/CT. A higher percentage of lesions with TBRmax ≥1.28 than of those with lower values (P=0.0062 by log-rank test) had poorer outcomes than those with lower values (P=0.0062 by log-rank test) (A). Patients with obstructive coronary stenosis (P=0.14) (B) and those with HRP (P=0.58) (C) did not have poorer outcomes than patients without those findings. CCTA indicates coronary computed tomography angiography; HRP, high-risk plaque; TBRmax, maximum tissue:background ratio.

Discussion

Our findings demonstrate that higher coronary 18F-NaF uptake per patient has a predictive value for 2-year coronary events. To the best of our knowledge, this study is the first to report the prognostic value of 18F-NaF PET/CT and its superiority to that of CCTA in the management of CAD. We found that higher coronary 18F-NaF uptake per patient correlated with advanced coronary calcium and that the presence of HRP on CCTA was a predictor of higher coronary 18F-NaF uptake in both patient- and lesion-based analyses. Despite the small cohort, our current results provide data to enhance the application of 18F-NaF PET/CT to the
management of CAD and support the implementation of a step-by-step approach using CCTA and ¹⁸F-NaF PET/CT for noninvasive identification of high-risk CAD.

Prognostic Significance of ¹⁸F-NaF PET/CT Versus CCTA

Noninvasive identification of CAD at high-risk for future coronary events is strongly desired. CCTA is promising and has been widely used as a noninvasive tool for assessing coronary atherosclerosis; however, CCTA-based high-risk features of coronary plaque have high prevalence and low positive predictive value for clinical events. A recent large cohort study found that detection of a high-risk plaque on CCTA had limited prognostic value among individuals with stable CAD.¹⁷ Notably, only 6.4% of patients with high-risk coronary plaques in that study developed major adverse cardiovascular events during a median follow-up of 25 months. Thus, there is a need for a new and additive imaging modality to increase the accuracy of detecting “true” high-risk CAD.

In the current study, ¹⁸F-NaF uptake showed promising potential as a method of predicting future coronary events, beyond coronary plaque analysis with CCTA. Whereas CCTA roughly assesses morphology, such as outward remodeling, of coronary atherosclerosis and plaque components, ¹⁸F-NaF uptake reflects metabolically active coronary lesions with ongoing calcifying activity and vascular inflammation. We

| Case Information and Findings on CCTA and ¹⁸F-NaF PET/CT in Culprit Lesions of Coronary Events |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Patient Number | Age, y | Sex | End Point | Interval (d) | CCTA | ¹⁸F-NaF PET/CT | Corresponding to M-TBRmax |
| | | | | | Obstructive Stenosis | HRP | ≥1.28 TBRmax | |
| 1 | 65 | Male | MI | 450 | Yes | No | No | No |
| 2 | 59 | Female | UA | 138 | No | No | Yes | Yes |
| 3 | 66 | Male | UA | 85 | No | Yes | Yes | No |
| 4 | 72 | Male | UA | 32 | Yes | No | Yes | No |
| 5 | 62 | Male | CR | 128 | Yes | No | No | No |
| 6 | 80 | Male | CR | 711 | No | Yes | Yes | Yes |
| 7 | 73 | Male | CR | 143 | Yes | Yes | Yes | No |
| 8 | 70 | Male | CR | 334 | Yes | Yes | Yes | Yes |
| 9 | 78 | Male | CR | 103 | Yes | No | No | No |
| 10 | 68 | Male | CR | 98 | Yes | Yes | Yes | Yes |
| 11 | 63 | Male | CR | 308 | No | Yes | Yes | Yes |

¹⁸F-NaF indicates ¹⁸F-sodium fluoride; CCTA, coronary computed tomography angiography; CR, coronary revascularization; CT, computed tomography; HRP, high-risk plaque; MI, myocardial infarction; M-TBRmax, maximum TBRmax per patient; PET, positron emission tomography; TBRmax, maximum tissue:background ratio; UA, unstable angina.
found that patient-based \(^{18}\)F-NaF accumulation in any coronary lesion had a prognostic value for the prediction of combined coronary events. High \(^{18}\)F-NaF uptake in any lesion in the entire coronary tree may be significant in risk stratification for individual patients, suggesting the importance of systemic assessment of coronary atherosclerosis. This concept is supported by our finding that almost half (5/11) of the culprit lesions for coronary events did not have

Figure 4. Representative cases showing relationship between \(^{18}\)F-sodium fluoride (\(^{18}\)F-NaF) PET/CT findings and occurrence of coronary events. In case 1 (A), CCTA revealed a PCP and nonobstructive stenosis (50–69% at PCP-1) in the proximal portion of the left anterior descending artery (CCTA, arrowheads). PCP-1 was defined as an HRP (minimum CT density: 13 HU; remodeling index: 1.24). The fused PET/CT image showed enhanced \(^{18}\)F-NaF uptake corresponding to PCP-2 (TBR\(_{\text{max}}\): 1.6; \(^{18}\)F-NaF PET/CT, arrows). Four months after \(^{18}\)F-NaF PET/CT scan, this patient experienced unstable angina resulting from subtotal occlusion in the lesion corresponding to PCP-2 (invasive coronary angiography, arrow). In case 2 (B), CCTA revealed PCP, defined as HRP (minimum CT density: 25 HU; remodeling index: 1.50), and obstructive stenosis (\(\geq70\)% in the proximal portion of the left anterior descending artery (CCTA, arrowhead). The fused PET/CT image showed minimal \(^{18}\)F-NaF uptake (TBR\(_{\text{max}}\): 1.0) corresponding to the PCP (\(^{18}\)F-NaF PET/CT, arrows). This patient had no coronary event during the follow-up period. Asterisk indicates implanted coronary stent. CCTA indicates coronary computed tomography angiography; CT, computed tomography; HRP, high-risk plaque; HU, Hounsfield units; PCP, partially calcified plaque; PET, positron emission tomography; TBR\(_{\text{max}}\), maximum tissue: background ratio.
maximum 18F-NaF accumulation. We found that the culprit lesions had higher 18F-NaF uptake than nonculprit lesions. We identified the optimal cutoff for patient-based maximum TBR$_{max}$ to be 1.28 for predicting future coronary events; almost all culprit lesions both for ACS (3/4) and late coronary revascularization (5/7) had an individual TBR$_{max}$.

Figure 4. Continued

Figure 5. Additional representative case 1. CCTA revealed heavy coronary calcification and obstructive stenosis (\geq70%) in the distal portion of the right coronary artery (CCTA, arrowhead). The fused PET/CT images showed enhanced 18F-sodium fluoride (18F-NaF) uptake corresponding to the calcification (maximum tissue-to-background ratio=1.6) (18F-NaF PET/CT, arrows). This patient experienced unstable angina resulting from subtotal occlusion in the lesion corresponding to the calcification (invasive coronary angiography, arrow) 1 month after 18F-NaF PET/CT scan. CCTA indicates coronary computed tomography angiography; CT, computed tomography; PET, positron emission tomography.
equal to or above the cutoff. Despite the low sensitivity and specificity of the cutoff, it may be a useful indicator in screening for high-risk patients and coronary lesions. The presence of obstructive stenosis on CCTA appears to have significance for the prediction of coronary events. In a midterm (mean: 3.9 years) follow-up study of CCTA, patients with marked stenosis (≥70%) had a higher rate of ACS than other patients. In our study, most enrolled patients had obstructive stenosis on CCTA, which may in part reflect the general trend of overestimation of coronary stenosis on CCTA. In patients with known or suspected CAD, the assessment of coronary stenosis on CCTA may have limited specificity in CAD risk stratification. Notably, the 2 culprit lesions in this study that caused MI or UA without obstructive stenosis on CCTA had enhanced 18F-NaF uptake (TBRmax ≥1.28), indicating the novel usefulness of 18F-NaF PET/CT in CAD risk assessment (case 2 in Figure 4).

Combining CCTA and 18F-NaF PET

According to our follow-up study, predicting enhanced 18F-NaF uptake in coronary atherosclerosis is important. Because it is not practical to perform 18F-NaF PET/CT in the general population, criteria are needed for identifying patients in whom the procedure could be beneficial. In an early report on coronary 18F-NaF PET/CT, 18F-NaF uptake in coronary...
arteries increased as CCS increased. Another recent study demonstrated that coronary plaques with high-risk characteristics on intravascular imaging (intravascular ultrasound and optical coherence tomography) had higher 18F-NaF TBR than those without such characteristics.19 In that study, the prevalence of adverse plaque characteristics on CCTA (low attenuation, positive remodeling, napkin-ring sign, and spotty calcification) was not different between 18F-NaF-positive (>25% higher uptake than reference lesion) and 18F-NaF-negative plaques; however, plaque burden and remodeling index were higher in 18F-NaF-positive plaques. In human carotid plaques, associations have also been reported between high-risk characteristics on CT (plaque burden and positive remodeling) and 18F-NaF uptake.20 Thus, coronary atherosclerosis burden and high-risk coronary plaques, which may be substantially assessed with cardiac CT, appear to be associated with 18F-NaF accumulation.

In this study, we investigated which CCTA findings predicted 18F-NaF TBRmax equal to or above the cutoff (1.28). Patient-based analysis demonstrated that higher CCS and the presence of HRP on CCTA were associated with coronary 18F-NaF TBRmax equal to or above the cutoff, whereas the presence of obstructive stenosis was not. In lesion-based analysis, the findings of PCP and HRP on CCTA strongly correlated with individual 18F-NaF TBRmax equal to or above the cutoff. Our results suggest that 18F-NaF
accumulation in CAD may be related not only to the quantitative progression of coronary atherosclerosis (CCS) but also to its biological state. This means that coronary calcification in heterogeneous plaques (PCP, HRP) is likely to be metabolically active.

Compared with intravascular ultrasound and optical coherence tomography, CCTA has advantages in the noninvasive approach to CAD. Our results suggest the usefulness of CCTA in identifying CAD and coronary lesions that are likely to have enhanced 18F-NaF uptake. Patients with higher CCS and/or HRP on CCTA could be suitable for 18F-NaF PET/CT examination. In the assessment of 18F-NaF PET/CT images, we should focus on 18F-NaF uptake especially in PCP and HRP. These ideas are helpful for the step-by-step utilization of CCTA and 18F-NaF PET/CT in CAD risk stratification.

Limitations

We acknowledge some limitations of this study. First, the sample size was small, and we found low post hoc study powers for our nonsignificant results (eg, differences in CCTA findings between groups). Because of the small cohort, we could not statistically investigate 18F-NaF uptake for hard coronary events (cardiac death and ACS) alone. The prediction of hard coronary events is clinically important and should be investigated with 18F-NaF PET/CT or a combination of CCTA and 18F-NaF PET/CT in a larger cohort. Second, the heterogeneity of patients should be interpreted with caution. We included patients both with and without a history of CAD. Thus, our current results do not indicate the usefulness of 18F-NaF PET/CT in the primary assessment of CAD. Third, the difficulty in merging the PET data with prior CCTA data and the lower spatial resolution of PET/CT images compared with CCTA images are technical limitations of our method. Using CCTA scanned at the time of PET/CT is recommended and future improvements in the spatial resolution of PET/CT images will promote our concept. Finally, we did not acquire histological information about coronary lesions with 18F-NaF uptake. This aspect is worthy of future investigation in human samples or experimental animal models.

Conclusions

The results of this study suggest that 18F-NaF PET/CT has the potential to detect high-risk CAD and individual coronary lesions and to predict future coronary events when combined with CCTA. Our study highlights the prognostic value of 18F-NaF uptake in coronary arteries, which provides clinically meaningful information for the management of CAD. Further study in a larger cohort is warranted to clarify the clinical utility of this new imaging option.

Acknowledgments

We acknowledge the help and support of the radiography and radiochemistry staffs of the Hiroshima Heiwa Clinic. We also thank Rebecca Tollefson, DVM, from Edanz Group for editing a draft of this article.

Sources of Funding

This study was supported by a Japan Heart Foundation Research Grant, a Takeda Science Foundation Research Grant, and a JSPS KAKENHI Grant-in-Aid for Scientific Research (grant no. 17K09502).

Disclosures

None.

References

16. Kitagawa et al

SUPPLEMENTAL MATERIAL
Table S1. Multivariate Analysis of CCTA findings and 18F-NaF Uptake in Predicting Coronary Events.

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>P value</th>
<th>Model 2</th>
<th>P value</th>
<th>Model 3</th>
<th>P value</th>
<th>Model 4</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive stenosis</td>
<td>3.0</td>
<td>0.12</td>
<td>3.5</td>
<td>0.076</td>
<td>5.4</td>
<td>0.025</td>
<td>9.4</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.8 to 19.9)</td>
<td></td>
<td>(0.9 to 23.4)</td>
<td></td>
<td>(1.2 to 39.3)</td>
<td></td>
<td>(1.5 to 118.4)</td>
<td></td>
</tr>
<tr>
<td>HRP</td>
<td>1.4</td>
<td>0.57</td>
<td>1.3</td>
<td>0.65</td>
<td>1.6</td>
<td>0.55</td>
<td>1.0</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>(0.4 to 6.6)</td>
<td></td>
<td>(0.4 to 6.2)</td>
<td></td>
<td>(0.4 to 8.6)</td>
<td></td>
<td>(0.1 to 9.2)</td>
<td></td>
</tr>
<tr>
<td>≥1.28 M-TBR$_{\text{max}}$</td>
<td>5.3</td>
<td>0.0082</td>
<td>4.5</td>
<td>0.028</td>
<td>5.0</td>
<td>0.037</td>
<td>8.2</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(1.5 to 24.3)</td>
<td></td>
<td>(1.2 to 23.1)</td>
<td></td>
<td>(1.1 to 30.8)</td>
<td></td>
<td>(1.4 to 79.2)</td>
<td></td>
</tr>
</tbody>
</table>

Data are expressed as hazard ratio (95% confidence interval).
Model 1: unadjusted

Model 2: adjusted for age, sex

Model 3: adjusted for age, sex, coronary risk factor, statin use

Model 4: adjusted for age, sex, coronary risk factor, statin use, obstructive stenosis, HRP, M-TBR_{max} \geq 1.28

^{18}F-NaF, ^{18}F-sodium fluoride; CCTA, coronary computed tomography angiography; HRP, high-risk plaque; M-TBR_{max}, maximum TBR_{max} per patient; TBR_{max}, maximum tissue-to-background ratio.
Table S2. Multivariate Analysis of CCTA findings in Predicting Higher 18F-NaF Uptake (M-TBR$_{\text{max}} \geq$1.28).

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>P value</th>
<th>Model 2</th>
<th>P value</th>
<th>Model 3</th>
<th>P value</th>
<th>Model 4</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive stenosis</td>
<td>1.2</td>
<td>0.75</td>
<td>1.3</td>
<td>0.74</td>
<td>1.1</td>
<td>0.90</td>
<td>0.9</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>(0.3 to 5.0)</td>
<td></td>
<td>(0.3 to 5.3)</td>
<td></td>
<td>(0.3 to 4.9)</td>
<td></td>
<td>(0.2 to 4.8)</td>
<td></td>
</tr>
<tr>
<td>HRP</td>
<td>5.6</td>
<td>0.026</td>
<td>5.9</td>
<td>0.024</td>
<td>10.2</td>
<td>0.0082</td>
<td>10.3</td>
<td>0.0081</td>
</tr>
<tr>
<td></td>
<td>(1.2 to 40.4)</td>
<td></td>
<td>(1.2 to 44.1)</td>
<td></td>
<td>(1.7 to 99.6)</td>
<td></td>
<td>(1.8 to 99.5)</td>
<td></td>
</tr>
</tbody>
</table>

Data are expressed as odds ratio (95% confidence interval).

Model 1: unadjusted

Model 2: adjusted for age, sex

Model 3: adjusted for age, sex, coronary risk factor, statin use
Model 4: adjusted for age, sex, coronary risk factor, statin use, obstructive stenosis, HRP

\(^{18}\text{F-NaF}, \ ^{18}\text{F-sodium fluoride}; \ \text{CCTA, coronary computed tomography angiography;} \ \text{HRP, high-risk plaque;} \ \text{M-TBR}_{\text{max}}, \ \text{maximum TBR}_{\text{max}} \ \text{per patient;} \ \text{TBR}_{\text{max}}, \ \text{maximum tissue-to-background ratio.} \)