Dynamic localization of a yeast development–specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation

Tsuyoshi S. Nakamura, Yumi Numajiri, Yuuya Okumura, Junji Hidaka, Takayuki Tanaka, Ichiro Inoue, Yasuyuki Suda, Tetsuo Takahashi, Hideki Nakanishi, Xiao-Dong Gao, Aaron M. Neiman, and Hiroyuki Tachikawa

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan; Laboratory of Glycobiology and Glycotechnology, Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1292, Japan; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215

ABSTRACT During the developmental process of sporulation in Saccharomyces cerevisiae, membrane structures called prospore membranes are formed de novo, expand, extend, acquire a round shape, and finally become plasma membranes of the spores. GIP1 encodes a regulatory/targeting subunit of protein phosphatase type 1 that is required for sporulation. Gip1 recruits the catalytic subunit Glc7 to septin structures that form along the prospore membrane; however, the molecular basis of its localization and function is not fully understood. Here we show that Gip1 changes its localization dynamically and is required for prospore membrane extension. Gip1 first associates with the spindle pole body as the prospore membrane forms, moves onto the prospore membrane and then to the septins as the membrane extends, distributes around the prospore membrane after closure, and finally translocates into the nucleus in the maturing spore. Deletion and mutation analyses reveal distinct sequences in Gip1 that are required for different localizations and for association with Glc7. Binding to Glc7 is also required for proper localization. Strikingly, localization to the prospore membrane, but not association with septins, is important for Gip1 function. Further, our genetic analysis suggests that a Gip1–Glc7 phosphatase complex regulates prospore membrane extension in parallel to the previously reported Vps13, Spo71, Spo73 pathway.

INTRODUCTION Sporulation of Saccharomyces cerevisiae is a developmental process in which dynamic cellular reorganization occurs. In response to nutrient limitation, spores are formed in the cytoplasm of the original diploid cell, which is then termed an ascus. Spores allow survival in severe environmental situations. Spore formation is coordinated with the meiotic divisions (Moens, 1971; Kupiec et al., 1997; Tsujishita et al., 1997; Neupert et al., 2003).
Neiman, 1998, 2005, 2011). During meiosis II, double membrane structures called prospore membranes appear at the cytoplasmic surface of each spindle pole body (SPB) and expand to form small round membranes, enveloping the daughter nuclei that are produced through meiosis. Prospore membranes then extend into a tube-like elongated shape to encapsulate organelles and cytosol. We call this stage “prospore membrane extension.” At the end of meiosis II, prospore membranes close and form spheres, and then spore walls are deposited between the double membranes. Because the prospore membrane is formed de novo, it is a good model for membrane formation in the cell.

Molecular mechanisms of each stage of prospore membrane formation and growth have been described (Neiman, 2011). Early in meiosis II, SPB modification occurs prior to membrane formation; components of the outer plaque of each SPB are replaced with sporulation-specific components, and the meiosis II outer plaque is formed (Knop and Strasser, 2000; Bajgier et al., 2001; Nickas et al., 2003). There, secretory vesicles are tethered and fused to form prospore membranes, a process that is dependent on sporulation-specific SNARE complex and phospholipase D, Spo14 (Nakanishi et al., 2004, 2006; Mathieson et al., 2010). Prospore membranes expand to form small, round caps over the SPBs by further fusion of secretory vesicles and then extend into a tube-like shape. Two membrane-associated protein structures are formed at this stage: the leading edge complex (LEC) and the septin structure. The LEC consists of at least four proteins, localizes to the lip of the prospore membrane, and is required for proper prospore membrane extension (Moreno-Borchart et al., 2002; Nickas and Neiman, 2002; Lam et al., 2014). Septins are a conserved family of proteins that form filaments. In vegetative cells, Cdc10, Cdc3, Cdc12, and Cdc11 or Shs1 form hetero-octamers that assemble into a ring at the bud neck (Bertin et al., 2008, 2012). During sporulation, Spr3 and Spr28 are induced and substitute for Cdc12 and Shs1/Cdc11, and the resulting sporulation-specific septin complex forms parallel bars along the prospore membrane (De Virgilio et al., 1996; Fares et al., 1996; Garcia et al., 2016). These sporulation-specific septin structures are required for prospore membrane extension, at least in some strains (Heasley and McMurray, 2016). Extension of the prospore membrane requires VPS13, SPO71, and SPO73 (Park and Neiman, 2012; Parodi et al., 2012, 2015; Okumura et al., 2016). Loss of any of these genes causes prospore membrane growth to stop at the small round stage. SPO71 recruits Vps13 to the prospore membrane and also interacts with SPO73 (Park et al., 2013; Okumura et al., 2016). Although the precise mechanisms by which these proteins work are still unknown, the proteins are thought to form a complex on the prospore membrane and to facilitate membrane extension.

Glc7 is the only catalytic subunit of protein phosphatase type 1 (PP1) in Saccharomyces cerevisiae. PP1 is a conserved protein and is involved in a variety of cellular processes, for which it is recruited by different regulatory/targeting subunits (Bollen et al., 2010). In yeast, Glc7 functions in multiple processes, including glucose repression with Rgs1, glycosynthesis with Gac1, endocytosis with Scd5, and cell wall synthesis during cytokinesis with Bni4 (Stuart et al., 1994; Tu and Carlson, 1995; Kozubowski et al., 2003; Cannon, 2010; Chi et al., 2012). Glc7 functions in sporulation with Gip1. Gip1 was originally isolated in a screen to identify interacting proteins of Glc7 and is a sporulation-specific protein required for sporulation (Tu et al., 1996). During prospore membrane formation, Gip1-Glc7 localizes to the septin bars along the prospore membrane, and after closure of the prospore membrane, Gip1 localizes uniformly around the membrane (Tachikawa et al., 2001). Analysis of gip1Δ cells revealed that Gip1 is required for proper localization of Glc7, septin organization, and spore wall formation (Tachikawa et al., 2001). Expression of a Glc7 mutant defective in binding to Gip1 as the sole Glc7 protein causes a phenotype similar to gip1Δ (Tachikawa et al., 2001). Thus, Gip1 is considered to be a sporulation-specific targeting subunit of Glc7; however, the molecular basis of its function and localization is not fully understood. YSW1 gene was identified as a multicopy suppressor of gip1 temperature-sensitive allele, and Ysw1 protein was shown to interact with Gip1 (Ishihara et al., 2009). Ysw1 localizes to the septin bars in a GIP1-dependent manner, and deletion of the YSW1 gene causes a defect in prospore membrane formation, but the sporulation defect is much weaker than that of the gip1Δ mutant (Ishihara et al., 2009).

In this study, we carefully revisit the gip1Δ phenotype and Gip1 localization and show that GIP1 is required for prospore membrane extension and that Gip1 localization is dynamic during sporulation. Deletion and mutation analyses reveal different domains of Gip1 to be required for its function and recruitment to various cellular locations. Further, our data suggest that Gip1 functions in prospore membrane extension in parallel to the previously reported Vps13, Spo71, Spo73 pathway. Our data support the existence of a novel regulation of prospore membrane extension by the Gip1–Glc7 phosphatase complex.

RESULTS

Gip1 is required for prospore membrane extension

The localization of Gip1 to septin structures along the extending prospore membrane (Tachikawa et al., 2001), together with the evidence that a deletion of YSW1, encoding a Gip1 interacting protein, causes a partial defect in prospore membrane formation (Ishihara et al., 2009), led us to examine whether prospore membranes are properly formed in the gip1Δ mutant. A fusion of residues 51–91 of Spo20 with green fluorescent protein (GFP) was used as a prospore membrane marker (Nakanishi et al., 2004) and was expressed in gip1Δ cells during sporulation. Prospore membranes in gip1Δ mutants appeared smaller than those in wild-type cells (Figure 1A). To quantify the difference in prospore membrane size, Htb2 tagged with mCherry was used as a nuclear marker (Okumura et al., 2016) to identify post-meiotic cells and the perimeter lengths of prospore membranes were measured (Figure 1B). The results indicate that prospore membranes in gip1Δ mutant cells are smaller than those in wild-type cells (Figure 1C), with most of the prospore membranes successfully capturing nuclei (>90%). As prospore membranes grow, they move through a series of discrete morphologies (Diamond et al., 2009). Initially, they appear as small caps on the spindle pole bodies; these expand into round structures and then extend into elongated shapes before becoming round again at prospore membrane closure. Time-lapse analysis of prospore membrane growth in the gip1Δ mutant revealed that prospore membrane formation initiates properly, but extension of prospore membranes into elongated shapes is rarely seen (Figure 1D and Supplemental Movies S1 and S2). These observations indicate that Gip1 is required for prospore membrane extension.

Gip1 dynamically changes its localization during prospore membrane formation

Gip1 localization during sporulation was previously analyzed using an N-terminally hemagglutinin-tagged version of Gip1 (HA-Gip1) in fixed cells (Tachikawa et al., 2001). To analyze the localization in live cells, we constructed GIP1-GFP based on the DNA sequence of the GIP1 gene at the Saccharomyces Genome Database (SGD), which was revised in a resequencing project (Engel et al., 2014). Although GIP1-GFP expressed using a CEN-based low-copy-number vector rescued the sporulation defect of the gip1Δ mutant, no
GFP fluorescence was observed (unpublished data). Thus, we overexpressed GIP1-GFP using a multicopy vector. In addition to the septin localization seen in the earlier immunofluorescence study (Tachikawa et al., 2001), GIP1-GFP showed localization to small prospore membranes, large round prospore membranes, and nuclei (Figure 2A), which was confirmed by colocalization with respective markers (Figure 2B). We also observed some dot patterns early in meiosis II; however, they did not colocalize with SPB or nucleolar markers (Schimmang et al., 1989; Mathieson et al., 2010) in most cells (Supplemental Figure S1, A and B). When GIP1-GFP was observed in an iso4Δ mutant, in which prospore membrane development arrests with precursor vesicles accumulated at the SPB, SPB localization of GIP1-GFP was observed (Supplemental Figure S1C), suggesting transient SPB localization in the wild type. It should be noted that we observed aberrantly narrow overextended prospore membranes in ~7.5% of the gip1Δ cells overexpressing GIP1-GFP, consistent with the model of Gip1 as involved in prospore membrane extension (Supplemental Figure S1D). Time-lapse analysis of GIP1-GFP revealed the order of change in localization (Figure 2, C and D, and Supplemental Movies S3–S5). Gip1 localizes first to small prospore membranes. As prospore membranes extend and septin bars are formed, Gip1 localizes to these septin structures. As prospore membranes become round at the time of closure, Gip1-GFP is seen transiently along the entire membrane, but then it is released from the membrane, moves into the nucleus, and finally disappears. These observations indicate that Gip1 localization is dynamic through spore formation.

Overexpression of the C-terminal region of Gip1 can partially rescue gip1Δ
Our data show that Gip1 localizes to various cellular locations and also functions in prospore membrane extension. To identify regions of Gip1 important for function and for targeting to different cellular locations, a deletion series of GIP1 was constructed as a fusion to the GFP coding sequence (Figure 3A).

First, these deletions were overexpressed in gip1Δ cells to assess their functionality. In the C-terminal deletion series of Gip1, only Gip1-N8(1–589) was mostly functional. The gip1Δ mutant expressing Gip1-N1(1–67) to Gip1-N6(1–476) did not sporulate, and no prospore membrane extension was observed in those cells. Slight sporulation was observed in cells expressing Gip1-N7(1–518) (0.2%). As for the N-terminal deletions, all three are partially functional. The gip1Δ mutant expressing Gip1-C1(477–639), Gip1-C2(358–639), and Gip1-C3(133–639) showed 1.7%, 6.3%, and 10.3% sporulation, respectively. These results suggest that the region between residues 477 and 589 has an essential function for sporulation.

Distinct regions of Gip1 are required for targeting to different cellular locations
Next, the different deletions were overexpressed in wild-type and gip1Δ cells, and localization of each of the expressed proteins was observed (Figure 3B) with respect to a prospore membrane marker (Supplemental Figure S2) and other markers (Figure 3C) during meiosis II. In the C-terminal deletion series, Gip1-N1(1–67) showed a prospore membrane pattern with diffuse cytosolic localization, while Gip1-N2(1–132) localized clearly to prospore membrane in both wild-type and gip1Δ cells, suggesting the existence of a weak membrane localization signal between residues 1 and 67 of Gip1 and a strong membrane localization signal between residues 68 and 132. Gip1-N3(1–222) to N7(1–518) showed the septin pattern in wild-type cells indicating that residues 133–222 of Gip1 are required for septin association. In gip1Δ cells, in which no septin bars are observed (Tachikawa et al., 2001), the fusions showed a small prospore membrane pattern. Gip1-N8(1–589), which is functional, showed the wild-type Gip1 localization pattern.

In the N-terminal deletion series, Gip1-C1(477–639) displayed a diffuse cytosolic pattern with dots in both meiosis II wild-type cells and gip1Δ cells (Figure 3B). More than 70% of these dots showed an SPB-like pattern and these dots colocalized with the meiotic SPB marker Mpc54-RFP (Figure 3C), indicating that the region between residues 477 and 639 of Gip1 confers the localization on the SPB. A similar pattern was observed with Gip1-C2(358–639) and Gip1-C3(133–639), although Gip1-C2 and -C3 are partially concentrated in the nucleus and Gip1-C3 also showed a filament-like pattern of variable direction and length (30% of cells).

In postmeiotic wild-type cells, while Gip1-N8 localized to the nucleus as well as full-length Gip1, Gip1-N6(1–476) localized to the prospore membrane (Supplemental Figure S2). Gip1-N7 showed localization to both the nucleus and the prospore membrane. These observations suggest that the region between residues 476 and 589 contains a sequence needed for release from the prospore membrane. Gip1-C2 and -C3 localized to the nucleus, as was the case with full-length Gip1 (Supplemental Figure S2); in contrast, Gip1-C1

![Image](36x513 to 378x735)

FIGURE 1: Observation of prospore membranes in wild-type and gip1Δ cells. (A) AN120 (wild-type) and TC544 (gip1Δ) cells were transformed with pRS424-TEF1-GFP-SPO2051–91, sporulated for 7 h, and subjected to fluorescence microscopy. (B, C) Representative images (B) and prospore membrane perimeters (C) of postmeiotic cells of strains AN120 (wild type) and TC544 (gip1Δ) carrying pRS424-TEF1-GFP-SPO2051–91, and pRS316-HTB2-mCherry are shown as the mean ± the SD. More than 50 PSMs were examined in three independent colonies of each strain (for a total of >150 PSMs). ***P < 0.001 (Student’s t test). (D) AN120 (wild-type) and TC544 (gip1Δ) cells were transformed with pRS424-TEF1-GFP-SPO2051–91, sporulated for 7 h, and subjected to time-lapse microscopic analysis. The time after the start of observation is shown in minutes. In all images, scale bars indicate 5 μm.
Gip1 contains a predicted α-helix: helix1 (residues 8–25) has a basic surface and helix2 (residues 94–111) is amphipathic, having hydrophilic and hydrophobic surfaces (Figure 4A). To examine whether these helices contribute to membrane localization of Gip1, a mutational analysis was performed. Gip1-N1-BM (R17A, K18A; basic-to-alanine mutations) and Gip1-N1-HeM1 (K18P; a helix-breaking mutation) expressed in wild-type and gip1Δ cells localized to the cytosol, still showing a faint prospore membrane pattern during sporulation (Figure 4B and Supplemental Figure S3A). This indicates that helix1 is important, but there may be some additional affinity to prospore membranes in residues 1–67. Next, helix1 and helix2 were mutated in the context of Gip1-N2. The mutations HyM (F98E, L102E; hydrophobic-to-hydrophilic mutations) and HeM2 (L102P; a helix-breaking mutation) were introduced into helix2. While mutations in helix1 did not show any effect, mutations in helix2 modestly affected the localization of proteins, resulting in a cytosolic pattern with prospore membrane localization (Figure 4C and Supplemental Figure S3B). When Gip1-N2 was mutated in both helix1 and helix2, however, cytosolic localization dominated and only a faint prospore membrane pattern was observed in less than 30% of the cells, suggesting that these helices are important for membrane localization of Gip1 (Figure 4C). In postmeiotic wild-type cells, while Gip1-N2 localized to the prospore membrane, Gip1-N2 mutated in helix2 localized to the nucleus (Supplemental Figure S3B), indicating that Gip1-N2 can translocate into the nucleus when its interaction with the prospore membrane is disrupted by mutation of helix2. In the context of full-length Gip1, a mutation in helix2 was sufficient to disrupt Gip1 protein localization and to decrease sporulation efficiency (Figure 4, D and E, and Supplemental Figure S3C). These results suggest that of the two helices in the N-terminal region of Gip1, the amphipathic helix2 is especially required for efficient localization to the prospore membrane and thus for Gip1 function.

A region adjacent to the C-terminus of the amphipathic helix is required for septin localization of Gip1, but dispensable for Gip1 function

Two helices in the N-terminal region are necessary for efficient prospore membrane localization and are important for function of Gip1

Our deletion analysis revealed that both residues 1–67 and residues 68–132 contain sequences that can mediate prospore membrane localization. Amphipathic α-helices are a common membrane-binding motif (Segrest et al., 1990), and each of these regions of Gip1 localized to the spore cytosol, suggesting that the region between residues 358 and 476 may contain a nuclear localization signal. These results indicate that Gip1 contain multiple different targeting sequences throughout the protein that contribute to its dynamic localization; residues 1–132 to the prospore membrane, residues 133–222 to the septin bars, residues 358–476 to the nucleus, and residues 477–589 to the SPB. Residues 477–589 also contain a sequence required for postmeiotic release from the prospore membrane.

Two helices in the N-terminal region are necessary for efficient prospore membrane localization and are important for function of Gip1

Our deletion analysis revealed that both residues 1–67 and residues 68–132 contain sequences that can mediate prospore membrane localization. Amphipathic α-helices are a common membrane-binding motif (Segrest et al., 1990), and each of these regions of Gip1 localized to the spore cytosol, suggesting that the region between residues 358 and 476 may contain a nuclear localization signal. These results indicate that Gip1 contain multiple different targeting sequences throughout the protein that contribute to its dynamic localization; residues 1–132 to the prospore membrane, residues 133–222 to the septin bars, residues 358–476 to the nucleus, and residues 477–589 to the SPB. Residues 477–589 also contain a sequence required for postmeiotic release from the prospore membrane.

Two helices in the N-terminal region are necessary for efficient prospore membrane localization and are important for function of Gip1

Our deletion analysis revealed that both residues 1–67 and residues 68–132 contain sequences that can mediate prospore membrane localization. Amphipathic α-helices are a common membrane-binding motif (Segrest et al., 1990), and each of these regions of Gip1 localized to the spore cytosol, suggesting that the region between residues 358 and 476 may contain a nuclear localization signal. These results indicate that Gip1 contain multiple different targeting sequences throughout the protein that contribute to its dynamic localization; residues 1–132 to the prospore membrane, residues 133–222 to the septin bars, residues 358–476 to the nucleus, and residues 477–589 to the SPB. Residues 477–589 also contain a sequence required for postmeiotic release from the prospore membrane.

A region adjacent to the C-terminus of the amphipathic helix is required for septin localization of Gip1, but dispensable for Gip1 function

To refine the region required for septin localization, an additional deletion series of $GIP1$ was constructed as a fusion to the GFP coding sequence and expressed in wild-type cells (Figure 5, A and B). While Gip1-N2d(1–209) showed a septin pattern, Gip1-N2a(1–150), Gip1-N2b(1–177), and Gip1-N2c(1–187) showed prospore membrane patterns. This indicates that the region between residues 188 and 209 or the sequence around residue 188 is required for Gip1 to colocalize with septins. An internal deletion removing this region (residues 178–222) from full-length GIP1-GFP, GIP1-Δsep mutant,
was constructed and expressed in the gip1Δ cells (Figure 5C). Gip1-Δsep did not localize to septin bars during membrane extension; instead it localized to the prospore membrane (Figure 5D). Importantly, septin organization appeared normal in these GIP1-Δsep cells (Figure 5E). In fact, Gip1-Δsep appeared fully functional. Cells expressing this protein sporulated as well as cells expressing full-length Gip1, even when expressed from a low copy vector (Figure 5F). These results indicate that septin localization of Gip1 is necessary neither for its function during prospore membrane extension nor for its role in organizing the septins. This is consistent with the observation that Gip1-GFP localizes uniformly on the prospore membrane in both the spr3Δ and spr28Δ mutant cells (Figure 5G), which show only modest sporulation defects in the SK1 strain background. We note that gip1Δ cells expressing Gip1-Δsep-GFP display disorganized prospore membranes in ~30% of the cells (Supplemental Figure S4), although the percentage of sporulation is similar to that in those expressing wild-type Gip1, reminiscent of a prospore membrane formation defect reported in septin mutants in the SK-BY background (Heasley and McMurray, 2016).

The region for septin localization was further examined using short fragments of Gip1 fused to GFP (Figure 5H). Although Gip1-SEP1 (residues 178–222) could not localize to septins (Figure 5I), a larger fragment, Gip1-SEP2 (residues 133–222), localized to the septin bars (Figure 5J), indicating that this domain contains a septin localization signal. Moreover, Gip1-SEP2 did not localize to the septin structure at the bud neck in vegetative cells (Figure 5K), suggesting that this localization signal is specific to the septin structure formed during sporulation.

Multiple nuclear localization signals (NLSs) contribute to postmeiotic nuclear localization of Gip1
Analysis of the localization of Gip1 deletion series revealed that the region...
The third VXF sequence is the functional PP1-binding motif in Gip1, and Gip1 itself might be a target of PP1/Glc7

The PP1-binding motif valine-x-phenylalanine (VXF) is found in many targeting subunits of PP1/Glc7 and is required for their interaction with Glc7 and thus for function (Cannon, 2010). Gip1 has three VXF sequences (Figure 7A). These sequences were mutated (Gip1-G7M1–3) and a two-hybrid interaction analysis with Glc7 was performed. While Gip1-G7M1(V292A, F294A) and Gip1-G7M2(V446A, F448A) showed interaction with Glc7 at a level comparable to that of wild-type Gip1, Gip1-G7M3(V492A, F494A) did not interact with Glc7 (Figure 7B), suggesting that the third site is the functional PP1-binding motif. To confirm this, these Gip1 mutants were expressed as HA or GFP fusions in gip1∆ mutant cells and sporulated. Cells expressing Gip1-G7M1 and Gip1-G7M2 sporulated and showed normal sporulation efficiency (Figure 7C). In contrast, cells expressing Gip1-G7M3 did not sporulate and showed a prospore membrane extension defect (Figure 7D bottom; see prospore membrane marker). Expression of Gip1-G7M3 was confirmed by Western blot (Figure 7E). These results demonstrate that the third PP1-binding motif (residues 492–494) is the functional PP1-binding motif of Gip1.

In the Western blot, we found that the band for Gip1-G7M3 was shifted to higher molecular weight (Figure 7E). Because Glc7 is a
If the only function of Gip1 is to recruit Glc7 to the prospore membrane, Glc7 should partially localize to SPB in gip1Δ cells (Tachikawa et al., 2001), these observations indicate that Glc7 partially localizes to SPB in gip1Δ cells. Together with the previous report that Glc7 partially localizes to SPB in gip1Δ cells, our data suggest that the primary function of Gip1 is to recruit Glc7 to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Substitution of functions of Gip1 domains using chimeras
Our data suggest that the primary function of the Gip1 N-terminus is to recruit the protein to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Interaction of Gip1 with PP1/Glc7 is required for its efficient release from the SPB during meiosis II and postmeiotic release from the prospore membrane
We also performed localization analysis of Gip1-G7M3 during sporulation. In gip1Δ cells, Gip1-G7M3 localized to small prospore membranes and SPBs, which was shown by colocalization with prospore membrane and SPB markers (Figure 7, D and G). In wild-type cells, Gip1-G7M3 localization mostly looked like wild-type Gip1 during meiosis, except that persistent SPB localization was more apparent (Figure 7, D and G). Together with the previous report that Glc7 partially localizes to SPB in gip1Δ cells (Tachikawa et al., 2001), these observations indicate that Gip1 and Glc7 can localize to the SPB independently and suggest that complex formation may allow their efficient release from SPB.

In postmeiotic wild-type cells, Gip1-G7M3 remained on large prospore membranes and rarely translocated to the nucleus (Figure 7D). This indicates that the interaction of Gip1 with Glc7 is required for release of Gip1 from mature round prospore membranes. Consistent with this result, a large prospore membrane pattern instead of a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Substitution of functions of Gip1 domains using chimeras
Our data suggest that the primary function of the Gip1 N-terminus is to recruit the protein to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Substitution of functions of Gip1 domains using chimeras
Our data suggest that the primary function of the Gip1 N-terminus is to recruit the protein to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Substitution of functions of Gip1 domains using chimeras
Our data suggest that the primary function of the Gip1 N-terminus is to recruit the protein to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Substitution of functions of Gip1 domains using chimeras
Our data suggest that the primary function of the Gip1 N-terminus is to recruit the protein to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Substitution of functions of Gip1 domains using chimeras
Our data suggest that the primary function of the Gip1 N-terminus is to recruit the protein to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).

Substitution of functions of Gip1 domains using chimeras
Our data suggest that the primary function of the Gip1 N-terminus is to recruit the protein to the prospore membrane and that the most important function of the Gip1 C-terminal domain is to bind to Glc7. To examine the former point, an alternative prospore membrane binding domain, GFP-Spo2051-91, was fused to Gip1-C1 to -C3, and these chimeras were expressed in gip1Δ cells (Figure 8A). Cells expressing these proteins displayed a nuclear pattern was observed in postmeiotic wild-type cells expressing Gip1-N2 to -N6, all of which lack this PP1-binding motif (Supplemental Figure S2).
In these cells, GFP-Spo20 defect was significantly rescued (16% sporulation) (Figure 8E).

contain a prospore membrane localization signal, the sporulation C1, which contains a functional PP1-binding motif, but does not mutant. However, when this chimera was coexpressed with Gip1- membrane, it could not rescue the sporulation defect of the gip1Δ mutant. However, when this chimera was coexpressed with Gip1-C1, which contains a functional PP1-binding motif, but does not contain a prospore membrane localization signal, the sporulation defect was significantly rescued (16% sporulation) (Figure 8E). In these cells, GFP-Spo20 localized on the prospore membrane as expected, and Gip1-C1-mCherry was slightly recruited to the membrane (Figure 8F). These results indicate that Glc7 recruited to the prospore membrane can only support sporulation in the presence of the Gip1 C-terminal region.

Gip1 may function in parallel to Spo73, Spo71, and Vps13

The prospore membrane extension defect of the gip1Δ mutant is similar to that seen in the spo73Δ, spo71Δ, and vps13Δ mutants. However, phenotypes of these mutants are distinct in some regards. While intraluminal vesicles are observed between inner and outer leaflets of the prospore membrane in spo73Δ, spo71Δ, and vps13Δ cells (Park and Neiman, 2012; Park et al., 2013; Okumura et al., 2016), no such structures were observed in gip1Δ cells (Tachikawa et al., 2001). Prospore membrane closure is partially defective in spo73Δ, spo71Δ, and vps13Δ cells; in contrast, prospore membrane closure is normal in gip1Δ cells (Park and Neiman, 2012). While nuclear capture by the prospore membrane is partially defective in spo73Δ, spo71Δ, and vps13Δ cells (Okumura et al., 2016), our observations showed that nuclear capture is normal in gip1Δ cells.

To examine the relationship between GIP1 and SPO73, SPO71, or VPS13, genetic interactions and localization dependencies were examined. First, GFP-Spo73, Spo71-GFP, and Vps13-GFP were overexpressed in gip1Δ cells during sporulation. GFP-Spo73 and Spo71-GFP localized on the prospore membrane in gip1Δ cells (Figure 9A). No suppression of the sporulation defect was observed, although larger prospore membranes were observed in 2.5% of the cells overexpressing GFP-Spo73 and 30% of the cells overexpressing Spo71-GFP (Figure 9A). For Vps13-GFP, a clear localization pattern was not observed even in wild-type cells (unpublished data), probably because of overexpression. When genomic VPS13 was tagged with GFP in the gip1Δ mutant, localization to the prospore membrane was observed (Figure 9B). A gip1Δ temperature-sensitive allele was also examined for suppression by overexpression of GFP-Spo73, Spo71-GFP, and Vps13-GFP, but again, no suppression was observed (unpublished data). These results indicate that overexpression of Spo73, Spo71, and Vps13 cannot suppress gip1Δ cells.
pattern (less than 10%), which is consistent with our observation that overexpression of Gip1-GFP can cause narrow extension of prospore membranes in 7.5% of wild-type cells.

Finally, the prospore membrane size of the gip1Δ spo73Δ double mutant was examined. If they function in the same pathway, the double mutant will show the same phenotype as the single mutants. If they function independently, the defects should be additive. The prospore membrane marker GFP-Spo20 was expressed in the gip1Δ spo73Δ double mutant together with a marker for nucleus, and the perimeter length of prospore membranes was compared in postmeiotic cells. Prospore membranes of the double mutant were smaller than those in the single mutants (Figure 9, D and E), indicating that the defects are additive. We also obtained a similar result with the gip1Δ vps13Δ double mutant (Figure 9, D and E). Taken together, our data suggest that Gip1 is involved in prospore membrane extension independent of Spo73, Spo71, and Vps13.

DISCUSSION

In this report, we show that a PP1 targeting/regulatory subunit, Gip1, binds the catalytic subunit, Glc7, through the PP1-binding motif and this complex dynamically changes its localization using multiple localization signals of Gip1. Our deletion and mutation analyses revealed that Gip1 has N-terminal helices (residues 8–25 and 94–111) for prospore membrane localization, an adjacent region (residues 133–222) for septin localization, a C-terminal region (residues 477–639) for SPB localization, multiple NLSs, and a C-terminal functional PP1-binding motif (residues 492–494) (Figure 10A). During sporulation, Gip1 is expressed around meiosis II, probably localizes transiently to the SPB through its C-terminal domain, and moves on to the newly formed prospore membrane through two helices in the N-terminal domain (Figure 10B). Through the region following the N-terminal helices, Gip1 then

FIGURE 7: Analysis of the interaction between Gip1 and Glc7. (A) Schematic diagram of Gip1-G7M mutants is shown. G7M: Glc7 binding mutation; dark blue: PP1-binding motif [VXF]. (B) AH109 cells were transformed with pGBK7-GLC7 and pGADT7-GIP1-wild type/mutants or empty vector, cultured, and 10-fold serial dilutions were spotted onto indicated SD plates. Each plate was incubated 2 d at 30°C. (C) TC544 (gip1Δ) cells were transformed with pRS426-Pspo20-3×HA-GIP1-wild type/mutants or empty vector, sporulated for 24 h, and observed with DIC microscopy. Percentages of ascis are shown in the diagram. More than 200 cells were observed in three independent colonies of each strain harboring indicated mutants (for a total of >600 cells). O/E: overexpression. (D) AN120 (wild-type) and TC544 (gip1Δ) cells were transformed with pRS424-GIP1-G7M3-GFP and pRS316-TEF1-mKate2-Spo20, sporulated, and observed at 7–9 h. Representative cells are shown. (E) TC544 (gip1Δ) cells were transformed with pRS426-PSPO20-3×HA-GIP1-wild type/G7M-mutants or empty vector, sporulated, and lysed. Proteins were then probed by Western blotting using anti-HA, with anti-Pgk1 as internal control. Top, Open arrowhead: a major band of 3×HA-Gip1-G7M3; closed arrowhead: lower-shifted 3×HA-Gip1 and 3×HA-Gip1-G7M1 and -G7M2 mutants. Bottom, Closed arrowhead: bands for Pgk1; asterisk: nonspecific bands. (F) TNY293 (wild-type harboring integrated MPC54-RFP) and TNY294 (gip1Δ harboring integrated MPC54-RFP) were transformed with pRS424-GIP1-G7M3-GFP, sporulated, and observed at 7–9 h. Representative cells are shown. In all images, scale bars indicate 5 μm.
colocalizes with septins, which form bars along the prospore membrane. After closure of the prospore membrane, Gip1 spreads transiently around the prospore membrane and then translocates to the nucleus, dependent on its multiple NLSs. Further, a mutation in the PP1-binding motif of Gip1 altered its localization, indicating that dynamic localization of the targeting subunit, Gip1, is also dependent on its interaction with the catalytic subunit through this motif.

This report also describes involvement of the Gip1–Glc7 complex in prospore membrane formation during sporulation. The gip1Δ mutant was shown to form only small prospore membranes; thus, Gip1 is required for prospore membrane extension. Our genetic analysis also revealed that Gip1–Glc7 functions independently of Spo73, Spo71, and Vps13, which function together on the prospore membrane in its extension, possibly through lipid regulation (Parodi et al., 2015; Okumura et al., 2016; Park et al., 2016). This is consistent with phenotypic difference between the mutants; while nuclear capture by the prospore membrane was partially defective, intraluminal vesicles are observed, and closure of the prospore membrane was partially defective in spo73Δ, spo71Δ, and vps13Δ mutants (Park and Neiman, 2012; Park et al., 2013; Okumura et al., 2016), nuclear capture was normal, no intraluminal vesicles were observed (Tachikawa et al., 2001), and closure of prospore membranes was normal in the gip1Δ mutant (Park and Neiman, 2012). We suggest that Gip1–Glc7 functions in a novel pathway contributing prospore membrane extension.

Gip1 colocalizes with septins and is required for proper septin organization along the prospore membrane (Tachikawa et al., 2001); however, colocalization of Gip1 with the septin bars was not required for proper septin organization. Rather, localization of Gip1 to the prospore membrane was sufficient to promote septin organization. This suggests that Gip1–Glc7 phosphatase may target proteins on the prospore membrane whose dephosphorylation is important for subsequent septin organization. This idea is consistent with the reported assembly of septin complexes by diffusion-driven annealing on membranes (Bridges et al., 2014). Recently, it was reported that septins are required for prospore membrane morphogenesis using strains of different background from SK1 (Heasley and McMurray, 2016). In our SK1 background strains, we can only see modest sporulation defects in the septin mutants (unpublished observation). In this same background strain, gip1Δ mutants fail to sporulate and completely arrest with small prospore membranes. Thus, although septin organization is regulated by Gip1–Glc7, the sporulation defect of gip1Δ cells cannot be explained by regulation of septin structures.

The region of Gip1 necessary and sufficient for association with the septins along the prospore membrane did not localize to...
FIGURE 9: Genetic interaction among GIP1, SPO73, SPO71, and VPS13. (A) TC544 (gip1Δ) cells were transformed with pRS424-GIP1-GFP, pRS424-PTEF1-mRFP-SPO20, or pRS424-SPO71-GFP sporulated for 7–9 h, subjected to fluorescence microscopy, and observed at 24 h with DIC microscopy. Representative cells are shown. Bottom numbers indicate sporulation efficiency, the percentage of cells that formed at least one spore. (B) HJY65 (gip1Δ) VPS13-GFP cells were transformed with pRS426-PTEF1-mRFP-SPO20, sporulated, and observed at 7–9 h. Bottom number indicates sporulation efficiency when VPS13-GFP was overexpressed (for a total of >600 cells). A representative cell is shown. (C) TC545 (spo73Δ), TC581 (spo71Δ), and TC572 (vps13Δ) cells were transformed with pRS424-GIP1-GFP, sporulated for 7–9 h, subjected to fluorescence microscopy, and observed at 24 h with DIC microscopy. Representative cells are shown. Bottom number indicates sporulation efficiency (for a total of >600 cells). (D) AN120 (wild-type), TC544 (gip1Δ), TC545 (spo73Δ), TC572 (vps13Δ), TC564 (gip1Δ spo73Δ), and TNY411 (gip1Δ vps13Δ) cells were transformed with pRS424-PTEF1-GFP-SPO20 and pRS316-HTB2-mCherry sporulated, and observed at 7–9 h. A representative cell is shown. (E) Prospore membrane perimeters of postmeiotic cells of strains AN120 (wild-type), TC544 (gip1Δ), TC545 (spo73Δ), TC572 (vps13Δ), TC564 (gip1Δ spo73Δ), and TNY411 (gip1Δ vps13Δ) are shown as the mean ± SD. More than 50 PSMs were examined in three independent colonies of each strain. The data of WT and gip1Δ are the same as in Figure 1C. P < 0.05 (gip1Δ–vps13Δ, spo73Δ–vps13Δ); P < 0.01 (vps13Δ–gip1Δ, vps13Δ–spo73Δ); P < 0.001 (WT–gip1Δ, WT–spo73Δ, WT–vps13Δ, WT–[gip1Δ spo73Δ, WT–[gip1Δ spo73Δ, WT–[gip1Δ spo73Δ, spo73Δ–[gip1Δ spo73Δ, gip1Δ–[gip1Δ spo73Δ, spo73Δ–[gip1Δ spo73Δ, gip1Δ–[gip1Δ spo73Δ, vps13Δ–[gip1Δ vps13Δ, spo73Δ–[gip1Δ vps13Δ]) (Tukey-Kramer test). In all images, scale bars indicate 5 μm.

septin structures at the bud neck when expressed in vegetative cells. During sporulation, septin filaments have components different from that in vegetative cells; two subunits, Spr3 and Spr28, replace Cdc12 and Cdc11/Shs1, and thus have distinct properties (Garcia et al., 2016). Thus, the septin localization signal may be specific for the sporulation-specific septins. Consistent with the idea that septin-association sequences might be different in vegetative and sporulating cells, a previous study found that the vast majority of septin-associated proteins in vegetative cells fail to associate with the septin bars during sporulation (Lam et al., 2014). In addition, although we compared the sequence of Gip1-SEP2 (residues 133–222) with those in previously reported septin-binding proteins, including Bni5 (Finnigan et al., 2015), Bud4 (residues 623–774; Wu et al., 2015), Hsl1 (residues 611–950; Finnigan et al., 2016) and Hof1 (residues 293–355; Meitinger et al., 2013), apparently related sequences could not be found. Further analysis to define the septin localization sequences in Gip1 will identify a sporulation-specific septin localization signal and may contribute to the understanding of structural differences between septin structures in vegetative and sporulating cells.

We showed that postmeiotic localization of Gip1 to the nucleus is dependent on multiple NLSs. Considering that Gip1 is required for expression of Dif1 in postmeiotic cells (Tachikawa et al., 2001), we expected to see spore wall defects when NLS mutants were expressed as a sole Gip1 allele. However, no spore wall defect was observed. Taken together with our result from time-lapse analysis, in which Gip1 disappears quickly in the nucleus, postmeiotic nuclear localization of Gip1 does not appear to be necessary for transcriptional induction of later meiotic genes, but rather may contribute to efficient degradation of the protein, which could allow reuse of Glc7.

Gip1 binds PP1/Glc7 through the PP1-binding motif located in its C-terminal region, and a Gip1 protein carrying a mutation in this motif was nonfunctional and hyperphosphorylated. There are reports showing that some targeting subunits are dephosphorylated by Glc7 (Sanz et al., 2000; Gardiner et al., 2007; Akiyoshi et al., 2009), and our results suggest that the Glc7-targeting subunit Gip1 is itself one of the targets of Glc7. Analysis of the localization of Gip1 mutant protein defective in binding to Glc7 in gip1Δ cells showed that this mutant protein is not efficiently released from the SPB. In cells where wild-type Gip1 is also present, the mutant protein is eventually released from the SPB, but then remains on the prospore membrane after closure and does not translocate to the nucleus. These observations suggest that dephosphorylation by Glc7 may be required for efficient release of Gip1 both from the SPB upon the initiation of prospore membrane formation and from the prospore membrane after closure. However, we cannot rule out the possibility that interaction of Gip1 with PP1/Glc7 is important and phosphorylation status of Gip1 is secondary effect caused by physical interference of phosphorylation.

When Glc7 was ectopically targeted to the prospore membrane independent of Gip1 by the fusion with Spo20 (residues 623–774), we did not find evidence to rescue a gip1Δ; however, coexpression of the membrane targeted Glc7 with a C-terminal fragment of Gip1 containing PP1-binding motif did restore sporulation. This suggests that, while the N-terminal region of Gip1 functions in targeting the Gip1–Glc7
subunits, Gip1 appears to be one of the most dynamic, responsible for moving the PP1 complex through different localizations in coordination with the events of sporulation. Further study to identify the targets of Gip1–Glc7 will provide an excellent model for regulation of PP1 during a developmental process.

MATERIALS AND METHODS

Yeast strains and media

Standard media and genetic techniques were used unless otherwise noted (Adams et al., 1997). All yeast strains used in this study, which were derived from the SK1 background, are listed in Supplemental Table 1. PCR-based gene alterations were performed as previously described (Longtine et al., 1998). Strains were constructed with the primers and plasmids in Supplemental Tables 2 and 3. In brief, HJY65: IC4, IC5, pFA6a-yEYFP-HIS3MX6; TC134: TN281, TN282, pFA6a-yEYFP-HIS3MX6; TC544: HT282, HT309, pFA6a-kanMX6; TC564: IC7, IC8, genome of TC555, TNY293 and TNY294: mod_pRS303-TEF1-mTagBF2-SPO2051–91 and pRS306-MPC54-RFP; TNY299: mod_pRS303-TEF1-mTagBF2-SPO2051–91 and pRS306-SPR28-mKate2; TNY375: mod_pRS303-TEF1-mKate2-SPO2051–91; TNY411: TN433, TN434, genome of H129. All PCR-based integrations and disruptions were confirmed by genomic PCR. All of the deletions constructed in this study were confirmed to be rescuable by expression of the deleted genes.

Plasmids

The plasmids used in this study are listed in Supplemental Table 3 in the Supplemental Materials. To generate mod_pRS303, an HIS3 endogenous gene fragment was cloned into pRS303 (Sikorski and Hieter, 1989). mod_pRS303-PTEF1-mKate2-SPO2051–91 was generated as follows: First, the P_{TEF1} fragment was amplified with TN25 and TN26 and with pRS424-P_{TEF1}-GFP-SPO2051–91 (Nakanishi et al., 2004) as a template, digested with SacI and NotI, and cloned into pRS303 (Sikorski and Hieter, 1989). pRS316-P_{TEF1}-mKate2-SPO2051–91 was generated as follows: First, the P_{TEF1} fragment was amplified with TN25 and TN26 and with pRS424-P_{TEF1}-GFP-SPO2051–91 (Nakanishi et al., 2004) as a template, digested with SacI and NotI, and cloned into pRS303 (Sikorski and Hieter, 1989). Second, the mKate2 fragment was synthesized by gBlocks (Integrated DNA Technologies: IDT), amplified with TN357 and TN358, and digested with NotI and XbaI, and the SPO2051–91-T_{CYC1} fragment was cut out from pRS424-P_{TEF1}-GFP-SPO2051–91 with XbaI and KpnI. Then both fragments were cloned into pRS316-P_{TEF1}. mod_pRS303-P_{TEF1}-mTagBF2-SPO2051–91 was generated as follows: First, P_{TEF1}-mKate2-SPO2051–91 was cloned into mod_pRS303. Second, the mTagBF2 fragment was synthesized by gBlocks (Integrated DNA Technologies: IDT), amplified with TN408 and TN409, digested with NotI and BamHI, and cloned into NotI–BglII digested mod_pRS303-P_{TEF1}-mKate2-SPO2051–91. To construct pRS306-MPC54-RFP, the MPC54-RFP fragment was cut out from pRS316-MPC54-RFP (Mathieson et al., 2010) with KpnI and SacI and cloned into pRS306 (Sikorski and Hieter, 1989). pRS316-SPR28-mKate2 was generated as follows: First, the mCherry fragment waswas...
amplified with TN98 and TN99 using pFA6a-mCherry-HIS3MX6 (gift from M. Onishi, Stanford University School of Medicine) as a template, digested with Xhol and KpnI, and cloned into pRS316-PTEF1. Second, the mKate2 fragment was amplified with TN380 and TN381, digested with Pael and AscI, and cloned into pRS316-PTEF1-CmCherry. Finally, the SPR28 fragment was amplified with TN175 and TN176, digested with SacI and EcoRI, and cloned into pRS316-PTEF1-C-mKate2. To construct prs3036-SPR28-mKate2, the SPR28-mKate2 fragment was cut out from prs316-SPR28-mKate2 with SacI and KpnI and cloned into prs3036. To generate pRS316-NOP1-mcherry, the NOP1 fragment was amplified with TNS03 and Y0325, digested with SacI and Xhol, and cloned into pRS316-PTEF1-C-mcherry. pRS424-GIP1-GFP was generated as follows: first, the chromosomal copy of GIP1 was fused to GFP using HT281, HT282, and pFA6a-yEGFP-HIS3MX6 (Nickas and Neiman, 2002) as a template and created TC134 strain. Second, the GIP1-GFP fragment was amplified with HT66 and HT84, digested with Xhol and SacII, and cloned into pRS316. Finally, the GIP1-GFP fragment was cut from pRS316-GIP1-GFP and cloned into pRS424 (Christianson et al., 1992).

To generate the GIP1-deletion mutant series, pRS424-GIP1-N1 to N8, and C1 to C3)-GFP, each linear fragment was amplified by inverse PCR using indicated primers and pRS424-GIP1-GFP as a template and digested with Noot or Clal, followed by self-ligation. To introduce Gip1 N-terminal mutations, BM, Hym, HeM1, HeM2, each linear fragment was amplified using indicated primers and templates, followed by self-ligation. To generate prs424-GIP1-(N2a to N2d), each linear fragment was amplified by inverse PCR using indicated primers and pRS424-GIP1-N3-GFP as a template and digested with Clal, followed by self-ligation. pRS314-GIP1-Δsep was generated as follows: First, GIP1 N-terminal fragment was cut out from pRS424-GIP1 with Xhol and EcoRI, GIP1 C-terminal fragment was cut out from pRS306-GIP1 with EcoRI and SacII, and both were cloned into pRS314 (Sikorski and Hieter, 1989) to generate pRS314-GIP1. Second, the prs314-GIP1-Δsep linear fragment was amplified by inverse PCR using indicated primers and templates and digested with Clal, followed by self-ligation. To generate pRS424-GIP1-Δsep-GFP, a linear fragment was amplified by inverse PCR with YN69 and YN128, and with pRS424-GIP1-GFP as a template, and digested with Clal, followed by self-ligation. To generate pRS314-GIP1-Δsep-GFP, GIP1-Δsep fragment was cut out from pRS424-GIP1-GFP with KpnI and PaelI, GIP1-Δsep fragment was cut out from pRS306-GIP1 with Xhol and EcoRI-GIP1 C-terminal fragment was cut out from pRS306-GIP1 with EcoRI and SacII, and both were cloned into pRS314 (Sikorski and Hieter, 1989) to generate pRS314-GIP1. Second, the prs314-GIP1-Δsep linear fragment was amplified by inverse PCR using indicated primers and templates and digested with Clal, followed by self-ligation. To generate pRS424-GIP1-Δsep-GFP, a linear fragment was amplified by inverse PCR using indicated primers and templates and digested with Clal, followed by self-ligation. To introduce Gip1 N-terminal mutations, BM, NLS1-4M, each linear fragment was amplified using indicated primers and templates, followed by self-ligation.

prs426-Psp2020-3xHA-GIP1-(G7M1 to G7M3) were generated as follows: First, the GIP1 C-terminal fragment was cut out from pRS306-GIP1 with SalI and SacII and cloned into pRS306 to generate pRS306-GIP1-C. Second, the Psp2020-3xHA-GIP1 N-terminal fragment was cut out from pSB5 (Tachikawa et al., 2001) with SalI, cloned into pRS306-GIP1-C to generate pRS306-Psp2020-3xHA-GIP1. Third, the Psp2020-3xHA-GIP1 fragment was cut from pRS306-Psp2020-3xHA-GIP1 with KpnI and SacII and cloned into pRS424 (Christianson et al., 1992) to generate pRS426-Psp2020-3xHA-GIP1. Finally, pRS426-Psp2020-3xHA-GIP1-(G7M1 to G7M3) linker fragments were amplified by inverse PCR using indicated primers and pRS426-Psp2020-3xHA-GIP1 as a template, followed by self-ligation. To generate pGAD7-GIP1 and G7M1 to G7M3 mutants, each fragment was amplified with HT315 and YSO319, and indicated templates, digested with BamHI and Xhol using the internal BamHI site, and cloned into pGAD7 (Clontech). To construct pRS424-GIP1-GIP1-GFP with Xhol and BglII, the GIP1-GFP C-terminal fragment was cut out from pRS426-Psp2020-3xHA-GIP1-GFP with BglII and EcoRI, and both were cloned into Xhol- and EcoRI-digested pRS424-GIP1-C1-GFP. To construct pRS424-GIP1-C1-GFP, the C1-GFP fragment was amplified with YN12 and pRS-R using pRS424-GIP1-GFP-GFP with Xhol and NotI, and both were cloned into Xhol- and SacI-digested pRS424. To generate pGBKT7-GLC7, the GLC7 fragment was amplified with Y0322 and Y0325, digested with Ncol and PstI, and cloned into GBKT7 (Clontech).

pRS424-PspR3-GFP-SPO20-51–91-GIP1-C3 to C3 was generated as follows: First, the GIP1 fragment was cut out from pRS424-PTEF1-GFP-SPO20-51–91 with Xhol and KpnI and cloned into pRS424 to generate pRS424-PspR3-GIP1-C3. Second, the PspR3 fragment was amplified with TN110 and TN111, digested with NotI and SacI, and cloned into pRS424-PspR3-GIP1-C3 to generate pRS424-PspR3-GIP1-C3. Third, the GFP-SPO20-51–91 linker fragment, coding GFP-Spo20-51–91, followed by a flexible linker, [Ser–Ala–Gly–Gly]6 [SAGG]x4, was amplified with TN27 and TN100 using pRS424-PTEF1-GFP-SPO20-51–91 as a template, digested with NotI and BamHI, and cloned into pRS424-PspR3-GIP1-C3 to generate pRS424-PspR3-GFP-SPO20-51–91-[SAGG]x4-TC1C. Finally, GIP1-C1 to C3 fragments were amplified with indicated primers, digested with BamHI and Xhol, and cloned into pRS424-PspR3-GFP-SPO20-51–91-[SAGG]x4-TC1C.

To generate pRS424-PspR3-GFP-SPO20-51–91-GLC7, the GLC7 fragment was amplified with Y0255 and Y0256, digested with BamHI and PstI, and cloned into pRS424-PspR3-GFP-SPO20-51–91-[SAGG]x4-TC1C. pRS426-GIP1-C1-mCherry was generated as follows: First, the mCherry fragment was cut out from pFA6a-mCherry-HIS3MX6 with Pael and BglII, and the GIP1 fragment was cut out from pRS426-GIP1-GFP with Xhol and Pael and cloned into Xhol- and BglII-digested pRS424-GIP1-GFP to generate pRS426-GIP1-mCherry. Second, the GIP1-C1-mcherry fragment was cut out from pRS424-GIP1-mCherry with EcoRI and SacII, and the GIP1-C1 fragment was cut out from pRS424-GIP1-C1-GFP with Xhol and EcoRI and cloned into Xhol- and SacII-digested pRS426.

pRS424-PVP53-GFP was generated as follows: First, the GFP-TADH1 fragment was amplified using YSM0017 and YSM0018, with pFA6a-GFP(S65T)-kanMX6 as a template, digested with Xhol and KpnI, and cloned into pRS424-PTEF1-C-GFP-TADH1. To generate pRS424-PTEF1-GIP1-SEP2-FGF-TADH1. To generate pRS424-PTEF1-GIP1-SEP2-GFP, the GIP1-SEP2 fragment was amplified with TN508 and TN578, digested with BamHI and Xhol, and cloned into pRS424-PTEF1-C-GFP-TADH1.

To introduce Gip1-NLS mutations, BM, NLS1-4M, each linear fragment was amplified using indicated primers and templates, followed by self-ligation.

Sporulation was performed as previously described (Neiman, 1998). For sporulation on plates, cells grown on yeast extract–peptone–dextrose (YPD) or synthetic dextrose (SD) medium plates were shifted to sporulation plates (1% potassium acetate) and incubated at 30°C.

Microscopy
Differential interference contrast (DIC) images and fluorescence images were obtained with a BX71 microscope (Olympus, Tokyo,
Proteins separated on SDS–PAGE gel were transferred to a polyvinylidene difluoride membrane. Membranes were blocked in 5% skim milk in TBS/T (Tris-buffered saline, 50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% Tween-20) for 1 h. Membranes were probed for 1 h with the primary antibody, a 1:100 dilution of monoclonal anti-hemagglutinin (HA) monoclonal antibody (mAb; 12CA5; Roche) or a 1:500 anti-Pgk1 mAb (459250; Thermo Scientific). After being washed three times with TBS/T for 10 min, membranes were treated with the horseradish peroxidase–conjugated secondary antibody (A9044; Sigma-Aldrich) for 1 h. After being washed three times with TBS/T for 10 min, the membrane was treated with ImmunoStar LD (296–69901; Wako, Osaka, Japan), and images were obtained with an ImageQuant LAS-4000mini (GE Healthcare, Little Chalfont, UK).

ACKNOWLEDGMENTS We thank Kazushige Touhara for helpful discussions. We also thank Takahiro Ohira for technical assistance. This work was supported by Japan Society for the Promotion of Science KAKENHI Grants JP25450094 and JP17K07712 to H.T. and National Institutes of Health Grant R01 GM-072540 to A.M.N.

