Glucose Excursions Between States of Glycemia With Progression to Type 1 Diabetes in the Diabetes Prevention Trial–Type 1 (DPT-1)

Jay M. Sosenko,1 Jay S. Skyler,1 Jeffrey P. Krischer,2 Carla J. Greenbaum,3 Jeffrey Mahon,4 Lisa E. Rafkin,1 David Cuthbertson,5 Catherine Cowie,6 Kevan Herold,7 George Eisenbarth,8 Jerry P. Palmer,9 and the Diabetes Prevention Trial–Type 1 Study Group

OBJECTIVE—We characterized fluctuations between states of glycemia in progressors to type 1 diabetes and studied whether those fluctuations are related to the early C-peptide response to oral glucose.

RESEARCH DESIGN AND METHODS—Oral glucose tolerance tests (OGTTs) from differing states of glycemia were compared within individuals for glucose and C-peptide. Dysglycemic OGTTs (DYSOGTTs) were compared with normal OGTTs (NLOGTT), while transient diabetic OGTTs (TDOGTTs) were compared with subsequent non diabetic OGTTs and with OGTTs performed at diagnosis.

RESULTS—Of 135 progressors with four or more OGTTs, 30 (22%) went from NLOGTTs to DYSOGTTs at least twice. Area under the curve (AUC) glucose values from the second NLOGTT were higher ($P<0.001$) than values from the first NLOGTT. Among 98 progressors whose DYSOGTTs and NLOGTTs were synchronized for the time before diagnosis, despite higher glucose levels ($P<0.01$ at all time points) in the DYSOGTTs, 30- to 0-min C-peptide difference values changed little. Likewise, 30- to 0-min C-peptide difference values did not differ between TDOGTTs and subsequent (within 3 months) nondiabetic OGTTs in 55 progressors. In contrast, as glucose levels increased overall from the first to last OGTTs before diagnosis ($P<0.001$ at every time point, $n=207$), 30- to 0-min C-peptide difference values decreased ($P<0.001$).

CONCLUSIONS—Glucose levels fluctuate widely as they gradually increase overall with progression to type 1 diabetes. As glucose levels increase, the early C-peptide response declines. In contrast, glucose fluctuations are not related to the early C-peptide response. This suggests that changes in insulin sensitivity underlie the glucose fluctuations.

Diabetes 59:2386–2389, 2010

From the 1Division of Endocrinology, University of Miami, Miami, Florida; the 2Division of Informatics and Biostatistics, University of South Florida, Tampa, Florida; the 3Benaroya Research Institute at Virginia Mason, Seattle, Washington; the 4Department of Epidemiology and Biostatistics, University of Western Ontario, Ontario, Canada; the 5Pediatrics Epidemiology Center, University of South Florida, Tampa, Florida; the 6National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; the 7Yale University School of Medicine, New Haven, Connecticut; the 8HLA/DNA Laboratory, University of Colorado, Aurora, Colorado; and the 9Division of Endocrinology, Metabolism, and Nutrition, Veterans Administration Puget Sound Health Care System, University of Washington, Seattle, Washington.

Corresponding author: Jay M. Sosenko, jsosenko@med.miami.edu.

Received 15 April 2010 and accepted 19 July 2010. Published ahead of print at http://diabetes.diabetesjournals.org on 3 August 2010. DOI: 10.2337/db10-0534.

© 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
to pairings of DYSOGTTs and NLOGTTs (see Table 1). There were significant increases in the AUC glucose from each of the NLOGTTs to their subsequent respective DYSOGTTs. There were also significant increases from the first NLOGTTs to the second NLOGTTs and from the first DYSOGTTs to the second DYSOGTTs.

RESULTS

There were 258 progressors to type 1 diabetes in the DPT-1 trials, of whom 207 (mean ± SD 11.4 ± 7.8 years, 58% male) were studied. All had a baseline OGTT and at least one OGTT during follow-up.

Of 135 progressors from both the parenteral and oral insulin trials with a minimum of four OGTTs, 30 (22%) had an alternating OGTT pattern (not necessarily consecutive) of normal, dysglycemic, normal, again, and then dysglycemic over their course of progression to type 1 diabetes. AUC glucose values from those OGTTs are shown in Fig. 1. As expected, there were significant increases in the AUC glucose when the DYSOGTTs were compared with their prior NLOGTTs (P < 0.001 for each difference). AUC glucose values from the second NLOGTTs were significantly higher than those from the first NLOGTTs (P < 0.001). Also, AUC glucose values from the second DYSOGTTs were significantly higher than those from the first DYSOGTTs (P < 0.01).

We assessed whether the state of glycemia was related to the early insulin response to an oral glucose challenge. For this purpose, we used the 30- to 0-min C-peptide difference as a measure of early insulin secretion (4). Table 1 shows early C-peptide response values according to pairings of DYSOGTTs and NLOGTTs (see RESEARCH DESIGN AND METHODS). The early C-peptide response was substantially lower (P < 0.001) in the DYSOGTTs (P < 0.01 for both the parenteral and oral trials separately) when they occurred after the NLOGTTs (NL→DYSGLY; n = 146). However, when the DYSOGTTs preceded the NLOGTTs (DYSGLY→NL; n = 70), the early C-peptide response from the DYSOGTTs did not differ significantly from that of the NLOGTTs (nor did they differ when the trials were analyzed separately). In fact, the early C-peptide response tended to be higher in the DYSOGTTs. When the DYSOGTTs and the NLOGTTs were synchronized for the time before diagnosis (SYNCH; n = 98), the early C-peptide response was similar between the NLOGTTs and the DYSOGTTs (also when the trials were analyzed separately). Thus, when the time to diagnosis was minimized as a factor, the early C-peptide response did not vary between the normal and dysglycemic states. In addition, no significant difference was found between the normal and dysglycemic states in the ratio of the C-peptide response over the glucose response from 0 to 30 min.

We examined the entire glucose and C-peptide curves from the OGTTs among SYNCH, the group whose DYSOGTTs and NLOGTTs were synchronized to the same time before diagnosis (Fig. 2). As expected, glucose levels (Fig. 2A) from the DYSOGTTs were significantly higher (P < 0.01) at every OGTT time point. The differences were especially apparent from 60 to 120 min. Even though glucose levels were higher from the DYSOGTTs, C-peptide levels (Fig. 2B) were also significantly higher in the fasting state (P < 0.05), at 90 min (P < 0.05), and at 120 min (P < 0.001). The sum of the differences between the 30-min C-peptide value and the subsequent values during the OGTT was significantly higher in the DYSOGTTs than in the NLOGTTs (3.20 ± 3.47 ng/ml vs. 2.14 ± 3.55 ng/ml, P = 0.008). BMI values did not differ between DYSOGTTs and NLOGTTs in 49 paired measurements concurrent with the paired DYSOGTTs and NLOGTTs (19.9 ± 5.2 kg/m² vs. 19.6 ± 4.9 kg/m², respectively).

Among 60 progressors with TDOGTTs, we analyzed data from 55 who had a nondiabetic OGTT (NDOGTT) within 3 months ([mean ± SD] 36 ± 16 days) of the TDOGTT. Glucose levels (online appendix Fig. 1A, available at http://diabetes.diabetesjournals.org/cgi/content/full/db10-0534/DC1) were higher in the TDOGTTs at the later time points (P < 0.01 at 60 min; P < 0.001 at both 90 and 120 min). Despite those higher glucose levels in the TDOGTTs, C-peptide levels (online appendix Fig. 1B) were similar at all time points, except for higher 120-min C-peptide levels (P < 0.01) in the TDOGTTs.

Similar to the findings from the comparison between the DYSOGTTs and the NLOGTTs, the early C-peptide response did not significantly differ between the TDOGTTs and the NDOGTTs. Also, there was no significant difference in the ratio of the C-peptide response over the glucose response from 0 to 30 min.

Of the 55 TDOGTTs analyzed above, 38 also had a subsequent OGTT at the time of diagnosis (DOGTT). The mean ± SD difference in time from the TDOGTTs to the DOGTTs was 0.9 ± 0.8 years. Glucose levels (online appendix Fig. 2A) were significantly higher at every time point in the DOGTTs than in the TDOGTTs, especially postchallenge (P < 0.001 for all time points ≥30 min).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>NLOGTT</th>
<th>DYSOGTT</th>
<th>NLOGTT</th>
<th>DYSOGTT</th>
<th>SYNCH (n = 98)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–0 minutes*</td>
<td>2.45 ± 1.25</td>
<td>2.01 ± 1.64†</td>
<td>1.96 ± 1.11</td>
<td>2.25 ± 2.00</td>
<td>2.24 ± 1.38</td>
</tr>
<tr>
<td>Years to diabetes*</td>
<td>2.97 ± 1.32</td>
<td>0.63 ± 0.45</td>
<td>1.31 ± 0.81</td>
<td>2.90 ± 1.22</td>
<td>1.66 ± 0.83</td>
</tr>
</tbody>
</table>

*Data are mean ± SD. **OGTTs synchronized (SYNCH) to the time before diagnosis. †P < 0.001 vs. NLOGTT.
C-peptide levels (online appendix Fig. 2B) were significantly lower in the DOGTTs at every postchallenge time point \((P < 0.01)\) after 30 min. The early C-peptide response was also significantly lower in the DOGTTs \((P < 0.001)\) than in the TDOGTTs.

Figure 3 shows the C-peptide response relative to the glucose response from the fasting state to 30 min in the serial TDOGTTs, NDOGTTs, and DOGTTs from the 38 progressors. The C-peptide response relative to the glucose response was greater in both the TDOGTTs \((P < 0.001)\) and the NDOGTTs \((P < 0.017)\) than in the DOGTTs. There was no significant difference between the TDOGTTs and the NDOGTTs.

In 207 progressors who had two OGTTs, glucose levels increased overall from the first \([\text{mean} \pm \text{SD}] 2.8 \pm 1.4 \text{ years before diagnosis}\) to the last OGTTs \((0.6 \pm 0.5 \text{ years before diagnosis})\) at every time point. In contrast with the lack of change in the early C-peptide response between states of glycemia, the early C-peptide response declined markedly from the first OGTT to the last OGTT \([\text{mean} \pm \text{SD}] 2.38 \pm 1.25 \text{ ng/dl} \text{ to } 1.87 \pm 1.11 \text{ ng/dl}; P < 0.001)\).

DISCUSSION

We have previously shown that on average glucose levels increase over time with progression to type 1 diabetes \((5)\). However, the data in this report suggest that within the individual, glucose levels do not necessarily increase in a simple, linear manner; rather there can be wide fluctuations that occur on a background of gradually increasing glucose levels. The overall picture can perhaps best be described as a kind of ratcheting, as is evident in Fig. 1. The second normal OGTT did not have the same degree of “normacy” as the first normal OGTT. The data indicate that this pattern extends even into the higher ranges of glycemia as the onset of type 1 diabetes approaches.

There appear to be at least two distinct patterns of change in glucose levels during the course of progression to type 1 diabetes, each occurring through a different mechanism. In one pattern, glucose levels increase over time as the early C-peptide response decreases. This pattern was evident when the first and last OGTTs were compared. The data suggest that the increasing glucose is at least in part attributable to a decline in early insulin secretion.

The second pattern, characterized by wide fluctuations of glucose levels, contrasts with the first pattern in that the excursions into the higher glucose range do not appear to be associated with a decrease in the early C-peptide response. The early C-peptide response was similar between the DYSOGTTs and NLOGTTs when they were synchronized to the time before diagnosis. Also, the early C-peptide response did not differ between the TDOGTTs and their subsequent NDOGTTs. Moreover, there were no significant differences in the ratio of the C-peptide response over the glucose response from 0 to 30 min between the DYSOGTTs and the NLOGTTs and between the TDOGTTs and the NDOGTTs. Thus, two separate analyses at different ranges of glycemia were consistent in showing a lack of association between glucose fluctuations and the early C-peptide response.

The data appear to indicate that differences in the early C-peptide response between DYSOGTTs and NLOGTTs are a function of the time before diagnosis when the OGTT is performed. The fact that the early C-peptide response tended to be higher in the OGTT that came first, and was independent of the state of glycemia, is consistent with the decline in the early C-peptide response with progression to type 1 diabetes.

Since glucose excursions were not related to the early C-peptide response, variation in glucose sensitivity could
have been a factor. Although BMI values were not signifi-
cantly higher when they were associated with the
DYSOGTTs, the higher later OGTT C-peptide values in the
DYSOGTTs is consistent with insulin data in nonobese
adults with impaired glucose tolerance (6) and adults with
diabetes (6,7). Data from other studies lend some support
to the view that insulin resistance could be involved in the
pathogenesis of type 1 diabetes (8–12). Interestingly, it
appears that increased insulin sensitivity could contribute
to the remissions that occur following the diagnosis of
type 1 diabetes (13,14).

The DOGTTs had much higher glucose levels and much
lower C-peptide levels and early C-peptide responses than
did the TDODTTs. Thus, β-cell function is much more
impaired when an OGTT is diagnostic of type 1 diabetes
than when it is transiently in the diabetic range. However,
those with TDODTTs represent a potential high risk target
population for type 1 diabetes prevention trials.

Excursions into higher glucose ranges could exacerbate
the loss of β-cell function through factors such as gluco-
toxicity (15). Therefore, it seems reasonable to consider
interventions that would decrease glucose variability, and
perhaps ultimately, preserve β-cell function.

ACKNOWLEDGMENTS

This work was funded by the National Institutes of Health
through the National Institute of Diabetes and Digestive
and Kidney Diseases, National Institute of Allergy and
Infectious Diseases, National Institute of Child Health and
Human Development, and General Clinical Research Cen-
ters Program; the Juvenile Diabetes Research Foundation
International; and the American Diabetes Association.

No potential conflicts of interest relevant to this article
were reported.

J.M.S. analyzed and wrote the manuscript. J.S.S.
conducted the study and reviewed the manuscript.
J.P.K. conducted the study and reviewed the manu-
script. C.J.G. conducted the study and reviewed the
manuscript. J.M. reviewed the manuscript. L.E.R.
conducted the study and reviewed the manuscript. D.C.
programmed the study and reviewed the manuscript.
C.C. conducted the study and reviewed the manuscript.
K.H. reviewed the manuscript. G.E. conducted the study
and reviewed the manuscript. J.P.P. conducted the
study, reviewed the manuscript, and assisted in writing
the manuscript.

Parts of this study were presented at the 70th Scientific
Sessions of the American Diabetes Association, Orlando,

REFERENCES

1. Sosenko JM, Palmer JP, Rafkin-Mervis L, Krischer JP, Cuthbertson D,
Mahon J, Greenbaum CJ, Cowie CC, Skryler JS, the Diabetes Prevention
Trial–Type 1 Study Group. Incident dysglycemia and the progression to
type 1 diabetes among participants in the Diabetes Prevention Trial–Type
1. Diabetes Care 2009;32:1603–1607

2. Diabetes Prevention Trial–Type 1 Diabetes Study Group. Effects of insulin
in relatives of patients with type 1 diabetes mellitus. N Engl J Med
2002;346:1685–1691

3. Diabetes Prevention Trial–Type 1 Diabetes Study Group. Effects of oral
insulin in relatives of patients with type 1 diabetes. Diabetes Care
2005;28:1068–1076

4. Sosenko JM, Palmer JP, Rafkin-Mervis L, Krischer JP, Cuthbertson D,
Greenbaum CJ, Eisenbarth G, Skryler JS. Trends of earlier and later
responses of C-peptide to oral glucose challenges with progression to type
1 diabetes in Diabetes Prevention Trial–Type 1 participants. Diabetes Care
2010;33:626–635

5. Sosenko J, Palmer JP, Greenbaum CJ, Mahon J, Cowie C, Krischer JP,
Chase HP, White NH, Buckingham B, Herold KC, Cuthbertson D, Skryler JS,
the Diabetes Prevention Trial–Type 1 Study Group. Patterns of metabolic
progression to type 1 diabetes in the diabetes prevention trial-type 1.
Diabetes Care 2006;29:643–649

6. Valov RS, Glick SM, Roth J, Berson SA. Plasma insulin and growth
hormone levels in obesity and diabetes. Ann N Y Acad Sci 1965;131:357–
373

7. Bagdade JD, Bierman EL, Porte Jr D. The significance of basal insulin
evels in the evaluation of the insulin response to glucose in diabetic and

9. Xu P, Cuthbertson D, Greenbaum C, Palmer JP, Krischer JP, the Diabetes
Prevention Trial–Type 1 Study Group. Role of insulin resistance in
predicting progression to type 1 diabetes. Diabetes Care 2007;30:2314–
2320

10. Pourlanos S, Narendra P, Bynes GB, Colman PG, Harrison LC. Insulin
resistance is a risk factor for progression to type 1 diabetes. Diabetologia
2004;47:1661–1667

Kipn M, the Childhood Diabetes in Finland Study Group. Models for
predicting type 1 diabetes in siblings of affected children. Diabetes Care
2006;29:662–667

12. Bingley PJ, Mahon JL, Gale EAM for the European Nicotinamide Diabetes
Intervention Trial (ENDIT) Group. Insulin resistance and progression to
type 1 diabetes in the European Nicotinamide Diabetes Intervention Trial
(ENDIT). Diabetes Care 2008;31:146–150

13. Yki Yrviinen H, Koivistio VA. Natural course of insulin resistance in type

14. Martin S, Pawloski B, Greulich B, Ziegler AG, Mandrup-Poulsen T,
Mahon J. Natural course of remission in IDDM during 1st year after

15. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose
toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the