Evolutionary insights into T-type Ca\(^{2+}\) channel structure, function, and ion selectivity from the *Trichoplax adhaerens* homologue

Carolyn L. Smith,1* Salsabil Abdallah,2* Yuen Yan Wong,2* Phuong Le,2* Alicia N. HarrackSingh,2 Liana Artinian,3 Arianna N. Tamvacakis,3 Vincent Rehder,3 Thomas S. Reese,1 and Adriano Senatore2

1National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892
2University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
3Georgia State University, Atlanta, GA 30302

Four-domain voltage-gated Ca\(^{2+}\) (Ca\(_v\)) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Ca\(_v\) channels, Ca,1 (L-type), Ca,2 (P/Q-, N- and R-type) and Ca,3 (T-type), Ca,3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Ca,3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from *Trichoplax adhaerens* (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Ca,3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca\(^{2+}\) over Na\(^{+}\) compared with the human homologue Ca,3.1, yet it exhibits a similar potent block of inward Na\(^{+}\) current by low external Ca\(^{2+}\) concentrations (i.e., the Ca\(^{2+}\) block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca\(^{2+}\) block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca\(^{2+}\) block and higher Ca\(^{2+}\) selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Ca,3 channel structure–function properties, ion selectivity, and cellular physiology.

INTRODUCTION

Voltage-gated calcium (Ca\(_v\)) channels play fundamental roles in the physiology of neurons and muscle, by coupling electrical signals carried largely by voltage-gated sodium (Na\(_v\)) and potassium (K\(_v\)) channels, with intracellular Ca\(^{2+}\)-dependent processes (Clapham, 2007). Of the three classes of Ca\(_v\) channels, L-type/Ca,1 channels are central for excitation-contraction coupling in muscle and excitation-transcription coupling in neurons and muscle, whereas N- and P-/Q-type (i.e., Ca,2) channels are central for fast presynaptic excitation-secretion coupling (Catterall, 2011). T-type/Ca,3 channels serve less obvious functions (Perez-Reyes, 2003; Senatore et al., 2012), but one clear contribution is their role in regulating cellular excitability, where their low voltages of activation and fast kinetics permit rapid depolarizing Ca\(^{2+}\) currents below the action potential threshold. T-type channels also play roles in driving low threshold exocytosis in both vertebrates and invertebrates, and in mammals have been shown to directly interact with presynaptic components of the vesicular SNARE complex (Weiss et al., 2012; Weiss and Zamponi, 2013). Notably, recent genomic studies indicate that T-type channels, and in fact the majority of genes with important roles in the nervous system, are present in primitive animals that lack nervous systems and single-celled organisms that predate animals (King et al., 2008; Srivastava et al., 2008, 2010; Steinmetz et al., 2012; Moran et al., 2015; Moroz and Kohn, 2015). We know little, however, about the function and properties of these extant gene homologues or about the functional or proteomic adaptations that were required to incorporate their primordial counterparts into nervous system function.

One very intriguing early diverging animal is *Trichoplax adhaerens* (phylum Placozoa), which has only six cell types and lacks synaptically connected neurons and muscle (Schierwater, 2005; Smith et al., 2014). Despite these absences, *Trichoplax* is able to coordinate motile behavior such as feeding (Smith et al., 2015), chemotaxis, and phototaxis (Heyland et al., 2014), indicative of trans-cellular signaling and communication independent of both chemical and electrical synapses. Given that Ca\(_v\) channels play crucial roles in both intra- and...
intercellular signaling, it is intriguing that the Trichoplax genome bears a full complement of Ca₃ channel genes: Ca₁, Ca₂, and Ca₃ (Srivastava et al., 2008).

Here, we sought to characterize the molecular properties of the most basal metazoan homologue of T-type channels from T. adhaerens. Co-immunolocalization of the channel, named TCₐ₃, with neurosecretory cell marker complexin labeled gland cells, shown previously to resemble neurosecretory cells in their expression of SNARE proteins and the presence of membrane-apposed vesicles (Syed and Schierwater, 2002; Smith et al., 2014). We cloned and in vitro expressed TCₐ₃, finding that despite its ancient divergence, it bears the hallmark structural and biophysical features of T-type channels, including a low voltage of activation, rapid and transient kinetics, and an apparent Ca²⁺ window current near resting membrane potential.

We also characterized the permeation properties of TCₐ₃, finding that the channel conducts moderately mixed inward Ca²⁺-Na⁺ currents, with a majority of current carried by Ca²⁺, similar to mammalian homologues (Shcheglovitov et al., 2007). Paradoxically, measuring Ca²⁺ over Na⁺ selectivity using bi-ionic reversal potential analysis (i.e., where inward Ca²⁺ ions compete with outward Na⁺ for permeation), revealed poor Ca²⁺ versus Na⁺ selectivity compared with human Ca₃.1, similar to the cloned T-type channel from invertebrate snail Lymnaea stagnalis (Senatore and Spafford, 2010; Senatore et al., 2014). We attribute the relatively low Na⁺ permeation through TCₐ₃, in spite of its poor Ca²⁺ over Na⁺ selectivity, to retention of a potent Ca²⁺ block. Based on comparative data, we suggest that Ca²⁺ block is more crucial for determining the degree of Na⁺ that permeates alongside Ca²⁺ compared with pore selectivity and is a locus for evolutionary change in T-type channel cation permeability.

**MATERIALS AND METHODS**

**Cloning of the TCₐ₃ channel cDNA**

Two cDNA libraries were made from Trichoplax whole-animal total RNA, one with an anchored oligo-dT₁₈ primer, for PCR amplification and cloning of the C-terminal half of TCₐ₃, and the other with a primer targeting a central region of the TCₐ₃ coding sequence, for cloning the N terminus (Table 1). The TCₐ₃ N- and C-terminal coding sequences were then independently amplified three times from the cDNA, via nested PCR using Pfu Turbo DNA polymerase (Agilent Technologies), with nested N- and C-terminal primer pairs containing NheI–XhoI and XhoI–XmaI sites, respectively. The nested NT primer (TCₐ₃ NT 5'2) also contained a mammalian Kozak translation initiation site (Kozak, 1986; i.e., 5'GCCACC-3'; Table 1) for effective expression of the TCₐ₃ channel protein in mammalian cells. PCR-amplified DNA fragments were subcloned into pIRE2-IR–enhanced green fluorescent protein (EGFP), sequenced, and compared with each other plus the Trichoplax genome (JGI Genome Portal, Grell-BS-1999 v1.0, scaffold 2_6781672.6793175) to generate a consensus coding sequence. The full-length TCₐ₃ clone was then prepared by inserting the XhoI–XmaI C-terminal subclone into the pIRE2 vector bearing the N-terminal TCₐ₃ fragment, producing pTCₐ₃-IR-EGFP. The full-length consensus coding sequence of TCₐ₃ was submitted to GenBank (accession no. KJ466205).

**Reverse transcription (RT)–PCR amplification of Trichoplax Ca₃ channel and accessory subunit mRNAs**

The Trichoplax genome encodes single gene homologues for each of the three metazoan Ca₃ channel types (Ca₁, Ca₂, and Ca₃; NCBI accession nos. XM_002108894.1, XM_002109739.1, and KJ466205, respectively), as well as a single Caβ accessory subunit gene (XM_002110305.1) and three Caₙδβ Ca₁/Ca₂ accessory subunit genes (CaₐₙδCaₐ₂δβ, and CaₐₙδCaₐₙδ; NCBI accession nos. XM_002112625.1, XM_002112621.1, and XM_00211347.1). Primers were designed to amplify ~500-bp cDNA fragments of each of these genes by RT–PCR (Table 1), using a cDNA library prepared by RT (SuperScript III Reverse Transcription; Thermo Fisher Scientific) with an anchored oligo-dT₁₈ primer (Table 1).

---

**Table 1. Sequence of primers used for cloning TCₐ₃ cDNA and semiquantitative RT-PCR**

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCₐ₃ NT cDNA</td>
<td>CTGAGTACGAGGAAGATTG</td>
</tr>
<tr>
<td>TCₐ₃ CT cDNA</td>
<td>CTGGTTGGTGGATGTGAGAC</td>
</tr>
<tr>
<td>TCₐ₃ NT 5'1</td>
<td>TGCATTCTTTTCTACTGTACG</td>
</tr>
<tr>
<td>TCₐ₃ NT 5'2</td>
<td>TACCTGGAGGCAGCCTGACCATGATTTCTGTCGCTATCAT</td>
</tr>
<tr>
<td>TCₐ₃ NT 3'1</td>
<td>CTCAAGGGCTTTTAACTGTCG</td>
</tr>
<tr>
<td>TCₐ₃ NT 3'2</td>
<td>TGGTGCTGCTGAGCTTTCCAG</td>
</tr>
<tr>
<td>TCₐ₃ CT 5'1</td>
<td>CTCTACATGCTTATAGCAGGTACCTCC</td>
</tr>
<tr>
<td>TCₐ₃ CT 5'2</td>
<td>TCCGTCTCAATGGTCTTGAG</td>
</tr>
<tr>
<td>TCₐ₃_F</td>
<td>AGTCTTTACGGATTTGCTCTTCTTG</td>
</tr>
<tr>
<td>TCₐ₃_R</td>
<td>CAATTATGCACTGACCTTTTCAAGC</td>
</tr>
<tr>
<td>TCₐ₂_F</td>
<td>CTGTCCTACATGCTTTAGTATAGCACATCTG</td>
</tr>
<tr>
<td>TCₐ₂_R</td>
<td>GTGAAAAGCAGAATGTACCCTCC</td>
</tr>
<tr>
<td>TCₐ₁_F</td>
<td>AGATGTAATTCTCAGATAGTGAAAGTCG</td>
</tr>
<tr>
<td>TCₐ₁_R</td>
<td>AACATCATGCTTATTACTGAGGCTTCC</td>
</tr>
<tr>
<td>TCₐ₂S_F</td>
<td>CTCGAGTGCAGCATAACTACCTAC</td>
</tr>
<tr>
<td>TCₐ₂S_R</td>
<td>TCCTACATGCTTATAGCAGGTACCTCC</td>
</tr>
<tr>
<td>TCₐ₂S_F</td>
<td>CTGTCCTACATGCTTTAGTATAGCACATCTG</td>
</tr>
<tr>
<td>TCₐ₂S_R</td>
<td>GTGAAAAGCAGAATGTACCCTCC</td>
</tr>
<tr>
<td>TCₐ₂S_F</td>
<td>CTCGAGTGCAGCATAACTACCTAC</td>
</tr>
<tr>
<td>TCₐ₂S_R</td>
<td>TCCTACATGCTTATAGCAGGTACCTCC</td>
</tr>
</tbody>
</table>

Translation start and stop codons are in bold, and the Kozak sequences and restriction enzyme sites used for cloning are underlined.
and whole-animal total RNA. PCR amplification was achieved in 25-µl reactions each containing 1.25 µl of 10 µM forward and reverse primers (Table 1); 0.125 µl of Taq DNA polymerase and 2.5 µl of corresponding 10× buffer (New England Biolabs, Inc.); 1 µl of 25 mM MgCl₂; 0.5 µl of 10 mM dNTP mix (New England Biolabs, Inc.); and 0.5 µl of cDNA template. Thermocycling conditions were 95°C for 2 min, 30 cycles of 94°C for 1 min, 59°C for 45 s, and 72°C for 1 min, and a final 10-min extension at 72°C.

Phylogenetic inference

Maximum likelihood (ML) phylogeny of various Ca channels was inferred from a MUSCLE-alignment of select channel protein sequences (Edgar, 2004), generated with the program MEGA7 (Kumar et al., 2016). Alignments were timed with trimAl (Capella-Gutiérrez et al., 2009), followed by some minor manual trimming to remove highly heterogeneous regions (raw sequences and the trimmed alignment are provided in FASTA format as Supplementary Files 1 and 2, respectively). ML model selection was achieved with MEGA7, revealing that the LG+G model was most suitable under both the corrected Akaike’s information criterion (AICc) and the Bayesian information criterion (BIC). The ML phylogenetic tree presented in Fig. 1 B was thus inferred from the trimmed alignment using the LG+G model, with 1,000 bootstrap replicates to generate node support values. Protein accession numbers used in the analysis are as follows: Amphimedon Cav1/Cav2, AQqu2.38198.001 from published transcriptome (Fernandez-Valverde et al., 2015); Salpingoeca Cav1/Cav2, XP_004989719.1; Salpingoeca Cav3, XP_004955501.1; Trichoplax Cav1 and Cav2, unpublished transcriptome; Trichoplax Cav3, KJ466205; Nematostella Cav1, XP_001639054.1; Nematostella Cav2a, Cav2b, and Cav2c, NVE4667, NVE18768, and NVE1263, respectively, from published transcriptome (Fredman et al., 2013); Nematostella Cav3a and Cav3b, NVE5017 and NVE7616, respectively, from published transcriptome (Fredman et al., 2013); Caenorhabditis elegans Cav1 (egl-19), NP_001023079.1; C. elegans Cav2 (unc-2), NP_001123176.1; C. elegans Cav3 (cca-1), CCDD66017.1; Drosophila Cav1 (α1-D), AAF55304.1; Drosophila Cav2 (cacomphyon), AFH70350.1; Drosophila Cav3 (Caα1T), ABW09342.1; Lymanne Cav1, AA085389.1; Lymanne Cav2, AA083841.1; Lymanne Cav3, AA083843.2; human Cav1.1, NP_000060.2; human Cav1.2, Q13936.4; human Cav1.3, NP_001123121.1; human Cav1.4, NP_005174.2; human Cav2.1, O00555.2; human Cav2.2, NP_000709.1; human Cav2.3, NP_001192221.1; human Cav3.1, NP_061496.2; human Cav3.2, NP_066921.2; human Cav3.3, NP_066919.2; Mnemiopsis Cav2, fragmented transcriptome sequences manually pieced together from published transcriptome (Ryan et al., 2013); Hormiphora Cav2, sequence extracted from a de novo assembly of RNA-Seq data (SRR1992642; Francis et al., 2015); Chlamydomonas Cav2, XP_001701475.1; Schizosaccharomyces pombe CCH1, NP_593894.1; and Saccharomyces cerevisiae CCH1, NP_011733.3.

Immunostaining and confocal microscopy

Trichoplax were frozen and freeze-substituted as described previously (Smith et al., 2014) with the following modifications. Coverslips (22 mm square, #1.5 thickness; ZEISS) were cleaned in nitric acid and treated with 3-aminopropyltriethoxysilane (#A3648; Sigma-Aldrich) to produce a positively charged surface. Trichoplax were transferred to a 500-µl drop of artificial seawater (ASW) placed in the center of the coverslips and left to adhere for 1–2 h. 300 µl of the ASW was removed and replaced with 500 µl of a 1:1 mixture of ASW and 1 M mannitol. After ∼5 min, the liquid was removed, and the coverslips were plunged into tetrahydrofuran at −80°C on dry ice and kept overnight. The coverslips were transferred to methanol with 1.6% paraformaldehyde on dry ice and then held at −20°C for 2–3 h and room temperature for 2 h. The specimens were rinsed in 100% ethanol (EtOH) and rehydrated gradually with 90%, 70%, and 50% EtOH (diluted with PBS) and PBS each for ∼10 min and blocking buffer (BB: 3% normal goat serum, 2% horse serum, 1% BSA in PBS) for 15 min. Then specimens were incubated in custom (Thermo Fisher Scientific) antiserum against the epitope ESR VNG NAK FTS DDQ RLDR corresponding to the middle of the TCa v3 I–II cytoplasmic linker (Fig. 1 A) or, to control for specificity, serum from the same rabbit before immunization both diluted 1:400 in BB overnight at 4°C. A custom (New England Peptide) chicken antibody against the epitope EATAPKDDSSKSNFSSR, found in the Trichoplax complexin protein, was added in some experiments to mark neurosecretory cells. After washing in PBS, the coverslips were incubated with Atto 488 goat anti–rabbit IgG (62197; Sigma-Aldrich) with/without Alexa Fluor 647 goat anti–chicken IgY (A-21449; Thermo Fisher Scientific) diluted 1:500 in BB for 2 h at room temperature. Nuclei were stained with Hoechst.

Images of immunostaining in Trichoplax were captured on an LSM 880 confocal microscope (ZEISS) with a 65× 1.4-N.A. PlanApo objective and 488-nm illumination for Atto 488 and 405-nm for Hoechst. Overview image stacks (17 images, 0.7-µm interval) were captured with a Quasar spectral detector with emission windows at 415–480 nm (blue) and 490–588 nm (green). Enhanced resolution image stacks (36 images, 0.185-µm interval) were collected with an Airyscan detector and 420–480- and 495–550-nm filters. Image stacks were displayed as maximum-intensity projections.

Immunodetection of TCa_3 on Western blots

Trichoplax whole-animal protein lysates were prepared from ∼30 specimens and lysed directly in 200 µl of re-
ducifying sample buffer preheated to 95°C (50 mM dithio- 
threitol, 1% wt/vol SDS, 7.5% glycerol, 0.003% bromophenol blue, and 40 mM Tris pH 6.8). Protein lysates from ectopically expressed TCa,3 channels in HEK-293T cells were prepared as follows. The entire coding sequence of TCa,3 was excised from the pTCa,3-IR-EGFP vector with restriction enzymes SacII and XmaI and cloned into pEGFP-C1 with the same sites (Takara Bio Inc.). The resulting plasmid pEGFP-TCa,3, pTCa,3-IR-EGFP, or the empty fusion vector pEGFP-C1 was cotransfected into HEK cells with rat Ca,β₁b and Ca,α₂δ₁ subunits (as outlined in the culturing and transfection section of the Materials and methods below), and cells were incubated at 28°C for 4–5 d and then briefly washed with warm PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, and 1.8 mM KH₂PO₄, pH 7.4). Cells were then lysed with 600 µl of sample buffer (50 mM dithiothreitol, 1% wt/vol SDS, 7.5% glycerol, 0.003% bromophenol blue, and 40 mM Tris, pH 6.8). Equal volumes for each lystate were loaded on either freshly prepared 7.5% polyacrylamide gels or precast 4–20% polyacrylamide gradient gels (Invitrogen), and electrophoresis was performed in Invitrogen MES buffer using an XCell SureLock Mini-Cell Electrophoresis System (Invitrogen). For each experiment, paired gels were run: one was subjected to Coomassie staining to confirm equal protein content among samples, whereas the other was transferred to a nitrocellulose membrane using a Tris-glycine transfer buffer (25 mM Tris, 192 mM glycine, 20% vol/vol methanol, and 0.5% SDS, pH 8.3). Western blots performed using custom anti-TCa,3 antibodies (rabbit polyclonal; Thermo Fisher Scientific) were done using (a) unpurified antibodies (terminal bleed serum, 1:1,000 dilution); (b) preimmune serum (1:1,000 dilution); or (c) affinity-purified antibodies (isolated by the manufacturer using a conjugated antigen peptide, 1:500 dilution). Western blots against EGFP epitopes (as an N-terminal fusion with TCa,3 or alone) were performed using a rabbit polyclonal anti-GFP antibody (Sigma-Aldrich) at 1:5,000 dilution. Primary antibody incubations were performed overnight at 4°C, and secondary antibody incubations, washing, and detection were performed using standard chemiluminescent methods.

Culturing and transfection of HEK-293T cells with TCA,3 cDNAs
The detailed methods used for culture and CaPO₄ transfection of cloned Ca,3 channels into HEK-293T cells, as well as techniques for whole-cell patch-clamp electrophysiology, have been previously documented in detail (Senatore et al., 2011, 2014; Senatore and Spafford, 2012). In brief, for electrophysiological experiments of in vitro-expressed TCA,3, 6 µg of the pTCa,3-IR-EGFP construct was transfected into HEK cells in 6-ml flasks, along with 3 µg of high voltage-acti-

The detailed methods used for culture and CaPO₄ transfection of cloned Ca,3 channels into HEK-293T cells, as well as techniques for whole-cell patch-clamp electrophysiology, have been previously documented in detail (Senatore et al., 2011, 2014; Senatore and Spafford, 2012). In brief, for electrophysiological experiments of in vitro-expressed TCA,3, 6 µg of the pTCa,3-IR-EGFP construct was transfected into HEK cells in 6-ml flasks, along with 3 µg of high voltage-acti-

The Trichoplax adhaerens T-type calcium channel | Smith et al.
software (Molecular Devices). Methods for Boltzmann transformation and curve fitting of electrophysiological data are described in previous publications (Senatore and Spafford, 2010, 2012). Relative permeabilities under bi-ionic conditions for TCa3 (i.e., \( \frac{P_{\text{ca}}}{P_{\text{x}}} \), where \( X = \text{Li}^+, \text{Na}^+, \text{K}^+, \text{or} \text{Cs}^+ \)) were calculated using the bi-ionic Nernst equation (Hille, 2001) as described previously (Senatore et al., 2014). Statistical analyses comparing electrophysiology data for TCA3 with data from other in vitro–expressed channels were done using one-way analysis of variance (ANOVA); \( p \)-values are presented in Table 2, where we provide citations for data from other studies.

Online supplemental material
Fig. S1 shows the percentage minimum–maximum plot of the TCa3 channel protein coding sequence compared with the three human Ca3 channels (hCa3.1, hCa3.2, and hCa3.3). Fig. S2 is an alignment of the domain II P-loop of T-type channels corresponding to the exon 12 region. Fig. S3 shows superimposed current–voltage plots of various Ca3 channel homologues under different bi-ionic conditions. The Ca3 channel protein sequences used to generate the phylogenetic tree depicted in Fig. 1 B are provided in supplemental text file 1 (untrimmed, unaligned sequences) and supplemental text file 2 (trimmed, MUSCLE-aligned sequences), both in FASTA format.

RESULTS

Identification and sequencing of a Ca3 channel homologue from *T. adhaerens*

Various Ca3 channel protein sequences were blasted against the *T. adhaerens* genome (Srivastava et al., 2008; JGI Genome Portal), identifying a predicted Trichoplax T-type/Ca3 channel homologue (T. *adhaerens* Grell-BS-1999 v1.0, scaffold 2:6781672-6793175). The predicted coding sequence served as a reference for RT-PCR amplification and sequencing of the Trichoplax Ca3 (TCa3) cDNA, amplified in two large fragments, with primers listed in Table 1. To build a consensus, every nucleotide along the 6,192-bp coding sequence of TCA3 was validated with a reference for RT-PCR amplification and sequencing. Two large fragments, with primers listed in Table 1. To build a consensus, every nucleotide along the 6,192-bp coding sequence of TCA3 was validated with a reference for RT-PCR amplification and sequencing. The resulting full-length open reading frame (submitted to GenBank with accession no. KJ466205) predicts a channel protein of 2,063 aa, a molecular mass of \( \sim238 \text{ kD} \), and a Kyte–Doolittle hydrophobicity profile with hydrophobic peaks corresponding to transmembrane helices (i.e., segments 1 to 6 or S1–S6) within each of IV repeat domains, conserved for all four-domain channels (Fig. 1 A). An inferred ML phylogeny of various Ca3 channel proteins places TCA3 basal to the two cnidarian T-type channels from Nematostella vectensis (Ca3a and Ca3b), as well as bilaterian protostome homologues *C. elegans* cca-1, *Drosophila* Ca-\( \alpha \mathrm{T} \), and *Lychnia* LCa3, and chordate deuterostome homologues (human Ca3 isotypes Ca3.1-Ca3.3; Fig. 1 B). Recent phylogenomic studies have placed *Trichoplax* and its phylum (Placozoa) as a sister clade to the bilaterians and cnidarians, and sponges (phylum Porifera) and comb jellies (phylum Ctenophora) as the most early diverging animals (Srivastava et al., 2008, 2010; Ryan et al., 2013; Moroz et al., 2014; Pisani et al., 2015). Based on this phylogeny, *Trichoplax* is the earliest diverging animal to possess all three types of bilaterian/cnidarian Ca channels (i.e., Ca1, Ca2, and Ca3). Instead, the marine sponge/poriferan *Amphimedon queenslandica* and the two ctenophores *Mnemiopsis leidyi* and *Hormiphora californiensis* have only single Ca3 channel genes, forming either a clade with Ca2 types (i.e., ctenophores) or a sister clade with Ca1 and Ca2 types (i.e., *Amphimedon*, hence dubbed Ca1/Ca2-like; Moran and Zakon, 2014; Senatore et al., 2016). Interestingly, recent genome sequencing of choanoflagellate *Salpingoeca rosetta* revealed the presence of a T-type channel, indicating that Ca3 types likely predate Metazoa (Fig. 1 B; Fairclough et al., 2013; Moran and Zakon, 2014), and hence were lost in Porifera and Ctenophora. Thus, TCA3 is the most divergent homologue of vertebrate/human T-type channels identified to date in animals.

Of select Ca3 channels with validated mRNA sequences (i.e., TCA3, *C. elegans* Ca3 channel cca-1, human Ca3.1 to Ca3.3 isotypes, *L. stagnalis* Ca3, and *Drosophila melanogaster* Ca-\( \alpha \mathrm{T} \)), the Trichoplax channel protein is among the smallest, with shorter cytoplasmic N- and C-terminal regions, as well as linkers between domains I–IV (Fig. 2 A). Instead, transmembrane regions (S1–S6 helices and corresponding linkers) are much more similar in length (Fig. 2 B), and indeed carry most of the protein sequence homology between different channels, whereas the cytoplasmic linkers and N/C termini exhibit much more divergence (Senatore and Spafford, 2010). The distant TCA3 bears what are perhaps the most distinguishing features of T-type channels: (a) a “selectivity filter” motif of EEDD, made up of negatively charged glutamate (E) and aspartate (D) residues that project into the pore to govern ion selectivity (Talavera and Nilius, 2006), distinct from the more calcium-selective EEEE selectivity filters of Ca1 and Ca2 channels (Figs. 1 A and 2 C); and (b) a predicted helix-loop-helix motif in the cytoplasmic linker between domains I and II, dubbed the “gating brake,” which serves to prevent channel opening at hyperpolarized membrane voltages (Perez-Reyes, 2010a) and where mutations in human Ca3.2 are associated with childhood absence epilepsy (Figs. 1 A and 2 D; Arias-Olguín et al., 2008).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>TCa,3</th>
<th>LCa,3 (+8b-25c)</th>
<th>P-value</th>
<th>Ref.</th>
<th>Ca,3.1</th>
<th>P-value</th>
<th>Ref.</th>
<th>Ca,3.2</th>
<th>P-value</th>
<th>Ref.</th>
<th>Ca,3.3</th>
<th>P-value</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Activation</strong></td>
<td></td>
</tr>
<tr>
<td>Peak of IV (mV)</td>
<td>−45</td>
<td>−40</td>
<td>1</td>
<td>35</td>
<td>2</td>
<td>−35</td>
<td>2</td>
<td>−25</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{1/2}</td>
<td>−59.32 ± 0.9 (8)</td>
<td>−53.48 ± 0.34 (13)</td>
<td>***</td>
<td>1</td>
<td>−49.3 ± 0.7 (26)</td>
<td>***</td>
<td>2</td>
<td>−48.4 ± 1.2 (10)</td>
<td>***</td>
<td>2</td>
<td>−41.5 ± 1.1 (17)</td>
<td>***</td>
<td>2</td>
</tr>
<tr>
<td>Slope (mV)</td>
<td>4.50 ± 0.25 (8)</td>
<td>5.46 ± 0.14 (13)</td>
<td>**</td>
<td>1</td>
<td>4.6 ± 0.1 (26)</td>
<td>NS</td>
<td>2</td>
<td>5.2 ± 0.4 (10)</td>
<td>NS</td>
<td>2</td>
<td>6.2 ± 0.2 (17)</td>
<td>***</td>
<td>2</td>
</tr>
<tr>
<td><strong>Inactivation</strong></td>
<td></td>
</tr>
<tr>
<td>V_{1/2}</td>
<td>−74.15 ± 0.90 (10)</td>
<td>−70.89 ± 0.49 (16)</td>
<td>**</td>
<td>1</td>
<td>−74.2 ± 1.1 (8)</td>
<td>NS</td>
<td>2</td>
<td>−75.6 ± 0.7 (19)</td>
<td>NS</td>
<td>2</td>
<td>−69.8 ± 0.9 (17)</td>
<td>**</td>
<td>2</td>
</tr>
<tr>
<td>Slope (mV)</td>
<td>2.69 ± 0.11 (8)</td>
<td>2.93 ± 0.08 (16)</td>
<td>NS</td>
<td>1</td>
<td>3.5 ± 0.3 (3)</td>
<td>***</td>
<td>2</td>
<td>6.2 ± 0.2 (19)</td>
<td>***</td>
<td>2</td>
<td>6.1 ± 0.1 (17)</td>
<td>***</td>
<td>2</td>
</tr>
<tr>
<td><strong>Activation kinetics</strong></td>
<td></td>
</tr>
<tr>
<td>V_{1/2}</td>
<td>14.36 ± 0.31 (8)</td>
<td>3.26 ± 0.13 (16)</td>
<td>***</td>
<td>1</td>
<td>8.2 ± 0.9 (8)</td>
<td>***</td>
<td>3</td>
<td>9.9 ± 0.4 (10)</td>
<td>***</td>
<td>3</td>
<td>43 ± 3 (9)</td>
<td>***</td>
<td>3</td>
</tr>
<tr>
<td>τ (-10 mV)</td>
<td>3.48 ± 0.13 (8)</td>
<td>0.74 ± 0.03 (9)</td>
<td>***</td>
<td>1</td>
<td>1.1 ± 0.1 (8)</td>
<td>NS</td>
<td>2</td>
<td>1.8 ± 0.1 (10)</td>
<td>***</td>
<td>3</td>
<td>5.9 ± 0.5 (9)</td>
<td>***</td>
<td>3</td>
</tr>
<tr>
<td><strong>Inactivation kinetics</strong></td>
<td></td>
</tr>
<tr>
<td>V_{1/2}</td>
<td>66.33 ± 3.39 (6)</td>
<td>27.51 ± 1.34 (16)</td>
<td>***</td>
<td>1</td>
<td>62 ± 23 (8)</td>
<td>NS</td>
<td>3</td>
<td>28 ± 3 (10)</td>
<td>***</td>
<td>3</td>
<td>126 ± 22 (9)</td>
<td>*</td>
<td>3</td>
</tr>
<tr>
<td>τ (-10 mV)</td>
<td>51.36 ± 1.53 (6)</td>
<td>15.67 ± 0.56 (16)</td>
<td>***</td>
<td>1</td>
<td>16 ± 1 (8)</td>
<td>***</td>
<td>3</td>
<td>15 ± 1 (10)</td>
<td>***</td>
<td>3</td>
<td>80 ± 5 (9)</td>
<td>***</td>
<td>3</td>
</tr>
<tr>
<td><strong>Deactivation</strong></td>
<td></td>
</tr>
<tr>
<td>−100 mV</td>
<td>1.46 ± 0.06 (12)</td>
<td>1.37 ± 0.05 (19)</td>
<td>NS</td>
<td>1</td>
<td>2.6 ± 0.2 (9)</td>
<td>***</td>
<td>2</td>
<td>3.6 ± 0.4 (14)</td>
<td>***</td>
<td>2</td>
<td>1.12 ± 0.1 (31)</td>
<td>*</td>
<td>2</td>
</tr>
<tr>
<td>−70 mV</td>
<td>9.15 ± 0.66 (12)</td>
<td>2.28 ± 0.18 (19)</td>
<td>***</td>
<td>1</td>
<td>6.2 ± 0.4 (9)</td>
<td>**</td>
<td>2</td>
<td>8.5 ± 1.1 (14)</td>
<td>NS</td>
<td>2</td>
<td>2.1 ± 0.1 (30)</td>
<td>***</td>
<td>2</td>
</tr>
<tr>
<td><strong>Recovery</strong></td>
<td></td>
</tr>
<tr>
<td>τ recovery (ms)</td>
<td>1275.05 ± 54.43 (6)</td>
<td>908.04 ± 27.05 (14)</td>
<td>***</td>
<td>1</td>
<td>137 ± 5 (12)</td>
<td>***</td>
<td>2</td>
<td>448 ± 36 (7)</td>
<td>***</td>
<td>2</td>
<td>260 ± 30 (18)</td>
<td>***</td>
<td>2</td>
</tr>
<tr>
<td><strong>Nickel</strong></td>
<td></td>
</tr>
<tr>
<td>(IC_{50}µM)</td>
<td>335.0 ± 6.5 (9)</td>
<td>300.9 ± 29.2 (4)</td>
<td>NS</td>
<td>4</td>
<td>304.8 ± 6.2 (5-6)</td>
<td>*</td>
<td>5</td>
<td>4.9 ± 2.0 (5-6)</td>
<td>***</td>
<td>5</td>
<td>216 ± 9 (5-6)</td>
<td>***</td>
<td>5</td>
</tr>
<tr>
<td><strong>Mixed Ca(^{2+})/Na(^{+}) currents</strong></td>
<td></td>
</tr>
<tr>
<td>% increase in I_{max} (Ca^{2+})</td>
<td>42.09 ± 3.19 (8)</td>
<td>12a: 149.75 ± 82.50 (6)</td>
<td>***</td>
<td>6</td>
<td>26.64 ± 9.24 (4)</td>
<td>*</td>
<td>31.96 ± 4.58 (11)</td>
<td>NS</td>
<td>45.45 ± 7.59 (6)</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% increase in I_{max} (Ba^{2+})</td>
<td>51.19 ± 2.64 (4)</td>
<td>12b: 901.29 ± 120.33 (5)</td>
<td>***</td>
<td>6</td>
<td>27.01 ± 3.17 (9)</td>
<td>***</td>
<td>6</td>
<td>36.88 ± 3.50 (7)</td>
<td>*</td>
<td>6</td>
<td>49.91 ± 6.23 (4)</td>
<td>NS</td>
<td>6</td>
</tr>
<tr>
<td><strong>Ca^{2+} vs. X^{+} permeability</strong></td>
<td></td>
</tr>
<tr>
<td>pCa/pLi</td>
<td>19.87 ± 1.30 (8)</td>
<td>12a: 22.74 ± 0.41 (8)</td>
<td>*</td>
<td>6</td>
<td>46.67 ± 2.32 (7)</td>
<td>***</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCa/pNa</td>
<td>35.61 ± 1.52 (8)</td>
<td>12a: 33.06 ± 1.50 (6)</td>
<td>NS</td>
<td>6</td>
<td>89.56 ± 8.21 (6)</td>
<td>***</td>
<td>6</td>
<td>80.58 ± 3.69 (4)</td>
<td>***</td>
<td>6</td>
<td>56.19 ± 2.99 (7)</td>
<td>***</td>
<td>6</td>
</tr>
<tr>
<td>pCa/pK</td>
<td>63.99 ± 4.19 (9)</td>
<td>12a: 50.25 ± 1.56 (12)</td>
<td>*</td>
<td>6</td>
<td>140.16 ± 12.02 (5)</td>
<td>***</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCa/pCs</td>
<td>114.83 ± 10.64 (7)</td>
<td>12a: 111.30 ± 8.57 (10)</td>
<td>NS</td>
<td>6</td>
<td>154.65 ± 7.99 (5)</td>
<td>*</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12b: 113.76 ± 7.19 (11)</td>
<td></td>
<td>NS</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P-values for statistical comparisons for all channels with respect to TCa,3 were generated using one-way ANOVA. *, P < 0.05; **, P < 0.005; ***, P < 0.0005; NS, not significantly different. Bold indicates the value most similar to TCa,3, and bold italics indicates the value most different from TCa,3. References: 1, Senatore and Spafford (2012); 2, Chemin et al. (2002); 3, Gomora et al. (2002); 4, Senatore and Spafford (2010); 5, Kang et al. (2006); 6, Senatore et al. (2014).
Reduced genomic complexity and absence of alternative splicing of the TCa\textsubscript{3} gene

Most of the \(\sim 11,500\) genes in the Trichoplax genome bear genomic architectures similar to orthologous genes in other animals (Srivastava et al., 2008). Accordingly, of the 28 exons/27 introns that make up the TCa\textsubscript{3} channel gene, 26 splice junctions have counterparts in the Ca\textsubscript{3.1} channel gene from mouse (MusCa\textsubscript{3.1}), whose mRNA transcript sequence is encoded by 38 exons/37 introns (Fig. 3). The Trichoplax Ca\textsubscript{3} channel gene is \(\sim 10\)-fold shorter than MusCa\textsubscript{3.1}, attributable to much smaller intron sizes here and across the entire Trichoplax genome (Srivastava et al., 2008). To summarize major structural differences between the Trichoplax and mouse Ca\textsubscript{3} genes (Fig. 3): (a) TCa\textsubscript{3} lacks an intron separating exons 2 and 3, in the coding region for the domain I S1-S2 linker (Fig. 1 A), but retains N-terminal introns separating exons 1 and 2, as well as exons 3–4, 4–5, and 5–6, which are conserved in all metazoan four-domain channels including Ca\textsubscript{a} and Na\textsubscript{a} channels (Spafford et al., 1999); (b) TCa\textsubscript{3} also lacks an intron separating exons 11 and 12 encoding the domain II extracellular P-loop between S5 and S6, which is found in all Ca\textsubscript{3} channels stemming from basal bilaterians (Senatore et al., 2014); (c) TCa\textsubscript{3} lacks alternative donor splice sites at the 3’ ends of exons 8 and 25, which in snail LCa\textsubscript{3} and MusCa\textsubscript{3.1} create optional exons 8b and 25c that regulate channel surface expression and gating, respectively (Chemin et al., 2001; Emerick et al., 2006; Shcheglovitov et al., 2008; Senatore and Spafford, 2012); (d) TCa\textsubscript{3} lacks exon 26 found in all mammalian Ca\textsubscript{3.1} and Ca\textsubscript{3.2} channel genes, as well as C. elegans cca-1, which produces similar but more slight gating effects compared with exon 25c (Chemin et al., 2001; Ohkubo et al., 2005; Steger et al., 2005; Zhong et al., 2006; Senatore and Spafford, 2012); and (e) TCa\textsubscript{3} is missing four
intron gains between exons 33 and 38 of MusCa3.1, corresponding to the channel C-terminal region. An overall reduction in genomic complexity for TCa3, especially in regions associated with alternative splicing, is consistent with reports that genes from basal metazoans generally undergo less alternative splicing (Pan et al., 2008; Wang et al., 2008; Gerstein et al., 2010; Graveley et al., 2011; Ramani et al., 2011). This was certainly evident during the sequencing and cloning of the TCav3 cDNA, in which we failed to identify a single alternatively spliced isoform, as well as an ongoing transcriptome analysis of Trichoplax whole-animal mRNAs (Senatore et al., 2016).

Adding to the analysis, Ca3 genes from premetazoan choanoflagellate S. rosetta and cnidarian N. vectensis reveal unique patterns in intron gain/loss across these different organismal lineages (Fig. 3). In keeping with the MusCa3.1 intro/exon numbering scheme, SalpCa3 exon 8 is fused with flanking exons 7 and 9, which are conserved as separate exons in mouse and Trichoplax, and bears an additional three internal exons. Notably, this region encodes the channel I–II linker protein sequence (Fig. 1A), which tends to be highly divergent between different Cav3 channels. In this equivalent position, NemCa3a has an additional exon compared with mouse and Trichoplax, which, interestingly, overlaps with mouse optional exon 8b, which alters channel membrane expression. SalpCa3 notably lacks numerous introns between exons 12 and 33, a re-
region encoding the C-terminal half of the channel protein (i.e., domains III and IV). Also evident is that MusCav3.1 exons 14–17 appear to have arisen via expansion from a single exon conserved in TCa v3 and NemCav3a, in a region that corresponds the III–IV linker, which interestingly serves as a hotbed for modulation of mammalian T-type channels by kinases and G-proteins (Chemin et al., 2006; Perez-Reyes, 2010b; Senatore et al., 2012). Finally, NemCav3a and MusCav3.1 bear more exons/introns in the 3′ end of the gene, perhaps indicative of intron expansion in the cytoplasmic C terminus, a region with poor sequence homology where it is difficult to infer conserved intron/exon structure.

TCa,3 is expressed in neurosecretory-like gland cells

Immunostaining Trichoplax with both crude and affinity-purified custom antibodies against a I–II linker epitope of TCa,3 (site depicted in Fig. 1 A) outlined cells around the rim of the animal and, less intensely marked, scattered cells further in the interior (Fig. 4 A). Enhanced imaging with the Airyscan detector (1.7-fold improvement in resolution and improved signal-to-noise relative to conventional confocal [Huff, 2015]) revealed that TCa,3 staining was near the surfaces of hourglass-shaped cells and concentrated at the side facing the exterior of the animal (Fig. 4 A, inset). Staining was not evident when using preimmune serum (Fig. 4 B). The cells that labeled for TCa,3 also were stained by an antibody against Trichoplax complexin (Fig. 4 C), a regulator of SNARE secretory proteins in neurons. The distribution of the cells as well as their shapes closely matched those of gland cells labeled with antibodies against the SNARE proteins syntaxin-1, synaptobrevin, and SNAP-25 (Smith et al., 2014). No signal was apparent in specimens incubated with preimmune serum and imaged with the same parameters.

We also confirmed expression of TCa,3 at the mRNA level by RT-PCR, where gene-specific primers amplified an appropriate ∼500-bp fragment from cDNA reverse transcribed from whole-animal total RNA using an oligo-dT18 primer (Table 1 and Fig. 5). Similarly, primers targeting the other two Trichoplax Ca, channels, Ca,1 and Ca,2, as well as the Ca,1/Ca,2 accessory subunit Ca,β and three Ca,α,δ subunits (Ca,α,δ-a, Ca,α,δ-b, and Ca,α,δ-c; Table 1), all produced expected bands of ∼500 bp, with no bands evident when the RTase enzyme was omitted from the reaction (Fig. 5). We also note that mRNA expression of these genes, as well as other genes homologous to those involved in cellular excitability (e.g., Na,2 and K, channels, K’ leak channels), are expressed in the whole-animal transcriptome of Trichoplax (Senatore et al., 2016).

Ectopic expression of TCa,3 in HEK-293T cells

The TCa,3 open reading frame (NCBI accession no. KJ466205) was cloned into bicistronic expression vector pIRES2-EGFP, which enables identification of positively transfected mammalian cells separately expressing TCa,3 plus the fluorescent marker EGFP. Transfection of this construct (pTCa,3-IR-EGFP) into HEK-293T...
cells produced barely detectable EGFP fluorescence (Fig. 6 A), suggesting that the TCa,3 insert was somehow inhibiting expression of bicistronic EGFP because the empty pIRES2-EGFP vector normally produces robust EGFP fluorescence in these cells. Attempts to record voltage-activated Ca\(^{2+}\) currents from HEK cells transfected with pTCa,3-IR-EGFP via whole-cell patch-clamp were unsuccessful, suggesting that the channel protein was also not expressed at high enough levels to accumulate at the cell membrane. A possible reason for the apparent poor expression of TCa,3 is the prevalence of tandem rare codons in its cDNA sequence with respect to humans, which is expected to decrease efficiency of ectopic protein translation (Gustafsson et al., 2004; Kobayashi, 2015; Presnyak et al., 2015). Specifically, TCa,3 exhibits a low codon adaptation index of 0.61 with respect to human preferred codons (Sharp and Li, 1987), and percentage minimum–maximum analysis reveals rare codon clustering along the entire length of the channel coding sequence (Fig. S1; Clarke and Clark, 2008).

Interestingly, previous research on cloned mammalian T-type channels revealed that coexpression with Ca,β and Ca,α,δ accessory subunits of high voltage–activated Ca,1 and Ca,2 channels increases Ca,3 channel expression by an indirect mechanism (Dubel et al., 2004). Thus, we sought to increase TCa,3 channel expression in HEK cells by cotransfecting with rat Ca,β,1b and Ca,α,2,δ,1 subunit cDNAs cloned into the mammalian expression vector pMT2 (Tomlinson et al., 1993). Strikingly, cotransfection of pTCa,3-IR-EGFP with rat Ca,β,1b and Ca,α,2,δ,1 subunit vectors produced an ∼217-fold increase in bicistronic EGFP fluorescence compared with cotransfection with empty mammalian expression vector pCDNA-3.1 (Fig. 6 A), quantified as relative integrated density with ImageJ software (Fig. 6 D). Cotransfection with just Ca,β,1b or Ca,α,2,δ,1 separately also increased fluorescence, but more moderately, with respective increases of ∼165-fold and 148-fold (Fig. 6 D). In addition, cotransfection of pTCa,3-IR-EGFP with the rat Ca,β,1b and Ca,α,2,δ,1 subunit cDNAs cloned into the mammalian expression vector pMT2 (Tomlinson et al., 1993). Strikingly, cotransfection of pTCa,3-IR-EGFP with rat Ca,β,1b and Ca,α,2,δ,1 subunit vectors produced an ∼217-fold increase in bicistronic EGFP fluorescence compared with cotransfection with empty mammalian expression vector pCDNA-3.1 (Fig. 6 A), quantified as relative integrated density with ImageJ software (Fig. 6 D). Cotransfection with just Ca,β,1b or Ca,α,2,δ,1 separately also increased fluorescence, but more moderately, with respective increases of ∼165-fold and 148-fold (Fig. 6 D). In addition, cotransfection of pTCa,3-IR-EGFP with the rat Ca,β,1b and Ca,α,2,δ,1 subunit vectors increased EGFP fluorescence ∼75-fold,

Figure 4. Immunostaining for TCa,3 in Trichoplax prepared by freezing and freeze substitution. (A) Large field shows a projection of 17 optical sections extending through the dorso-ventral thickness of the animal but omitting the dorsal and ventral surfaces where there is nonspecific staining. Labeled cells are concentrated around the rim but also present in the interior, although too dim to see in this unenhanced image. (Inset) Projection of 36 optical sections through cells reaching the ventral surface at the exterior of the animal. Staining is concentrated near the surfaces of hourglass-shaped cells and is most intense on the side facing the exterior. (B) Comparison of staining for TCa,3 with matched preimmune control showing lack of staining for TCa,3. (A and B) Nuclei are blue. (C) Cells that immunostain for TCa,3 also label for complexin, a marker for neurosecretory cells. Merged view of double stain (right) shows TCa,3 in green and complexin in red. The left panel shows TCa,3 (green), and the middle panel shows complexin (red). A (inset) and C were collected with an enhanced detector (Airyscan). Bars: (A–C) 10 µm; (A, inset) 5 µm. The scale bar for B is shared with C.

Figure 5. RT-PCR amplification of various Trichoplax Ca, channel subunits. RT-PCR amplification of cDNA corresponding to the three Trichoplax Ca, channels (TCa,1, TCa,2, and TCa,3), the single Ca,β subunit, and the three Ca,α,δ subunits (Ca,α,δ-a, Ca,α,δ-b, and Ca,α,δ-c) from a whole-animal total RNA cDNA library prepared with an anchored oligo-dT\(_{18}\) primer.
Figure 6. **In vitro expression of TCa,3 in HEK-293T cells.** (A) Bicistronic EGFP fluorescence images (top) and merged EGFP/transmitted light images (bottom) of HEK-293T cells cotransfected with pTCA,3-IR-EGFP (vector map on left) and pCDNA-3.1 (+pC) and/or pMT2 constructs bearing the coding sequences of rat Ca,β,1b and Ca,α,δ,1 accessory subunits. (B) Similar to A, but cells were transfected with the pEGFP-TCA,3 construct, encoding a fusion protein of TCA,3 tagged with N-terminal EGFP. (C) Similar to A, but cells were transfected with the empty EGFP fusion vector pEGFP-C1. Bar, 200 µm. (D) Bar graph depicting normalized mean fluorescence of imaged HEK cells from quadruplicate transfections (±SE). The purple asterisks denote statistically significant means (***, P < 0.005) comparing the +pC condition with all others via one-way ANOVA. (E) Western blot of HEK cell protein lysates with anti-EGFP antibody, prepared by cotransfection of the pEGFP-TCA,3 vector with indicated combinations of pCDNA-3.1, rat Ca,β,1b, and/or Ca,α,δ,1. (F) Western blot of HEK cell protein lysates with anti-EGFP antibody, prepared by cotransfection of the pEGFP-C1
whereas Ca_{β1b} and Ca_{αδ1} alone increased fluorescence ~47-fold and ~38-fold, respectively (Fig. 6, B and D). Interestingly, the Ca_{β1b} and Ca_{αδ1} vectors also increased fluorescence of EGFP when transfected without TCav3, from the empty vector pEGFP-C1 (Fig. 6, C and D), and this corresponded with increased EGFP protein levels apparent on Western blots of corresponding HEK cell lysates probed with anti-EGFP antibodies (Fig. 6 F).

We were unable to detect the endogenous TCav3 protein in Western blots of *Trichoplax* whole-animal lysates or blots of protein lysates from TCav3-transfected HEK cells when using the custom anti-TCav3 antibodies. Instead, blots of HEK cells transfected with pEGFP-TCav3 plus the Ca_{β1b} and Ca_{αδ1} vectors produced appropriate bands of ~270 kD when probed with anti-EGFP (Fig. 6 E), consistent with the predicted molecular weight of the TCav3 channel protein (238 kD) plus EGFP (32.7 kD). In accordance with our inability to record TCav3 Ca^{2+} currents when pTCav3-IR-EGFP was transfected without the Ca_{β1b} and Ca_{αδ1} subunit vectors, we were unable to detect the EGFP-TCav3 fusion protein without cotransfection of Ca_{β1b} and Ca_{αδ1} (Fig. 6 E, left lane). Thus, the rat Ca_{β1b} and Ca_{αδ1} subunit vectors appear to dramatically boost protein expression of TCav3, as either an EGFP fusion protein or a separate protein from the pTCav3-IR-EGFP construct. However, the effect of Ca_{β1b} and Ca_{αδ1} subunit vectors on ectopic protein expression appears to be at least in part nonspecific because they also boost expression of coexpressed EGFP in the absence of TCav3 (Fig. 6, D and F).

Finally, in lanes on Western blots in which the subunits were included and EGFP-TCav3 protein expression was evident, several additional bands could be observed with molecular weights of ~100 kD and a triplet of intense bands near 33 kD (Fig. 6, E and F), suggesting that the channel either is being degraded in HEK cells or is incompletely translated. Application of proteasome inhibitor MG-132 to cells transfected with pEGFP-TCav3 plus pCDNA-3.1 for 12 h before fluorescence imaging caused only a 7.2-fold increase in EGFP integrated density (Fig. 6 G), still below the detection limit of Western blotting (not depicted), suggesting that proteasomal degradation only partly accounts for the poor expression of TCav3. Notable is that coexpression of EGFP-TCav3 with the Ca_{β1b} and Ca_{αδ1} subunits does not appear to increase channel protein expression by decreasing the amount of degradation, but rather, by increasing the total amount of protein, including the complete protein, plus all of the incomplete intermediates (Fig. 6, E and F).

**TCav3 conducts low voltage-activated calcium currents in vitro, characteristic of T-type channels**

Whole-cell voltage clamp recording of HEK cells cotransfected with pTCav3-IR-EGFP, rat Ca_{β1b} and rat Ca_{αδ1} produced low voltage-activated calcium currents in 2 mM external Ca^{2+} in response to depolarizing voltage steps from −110 mV to between −90 and 40 mV (Fig. 7 A). A plot of peak currents versus step potential (i.e., current–voltage or IV plot) reveals a slightly hyperpolarized maximal peak inward current of ~45 mV (Fig. 7 B), which is between 5 and 20 mV more negative than that of other Ca_{3} channels (Table 2). Boltzmann transformation of the IV plot, which removes the influence of driving force to estimate the voltage dependence for channel activation, indicates that TCav3 activation begins at very low depolarizing potentials compared with published data for other Ca_{3} channels derived using similar methods (i.e., compare half-maximal activation [V_{1/2}] of −59.32 ± 0.9 mV for TCav3 vs. −53.48 ± 0.34 for *Lymnaea* Ca_{3} [Senatore and Spafford, 2012]; −49.3 ± 0.7 for human Ca_{3,1} [Chemin et al., 2002]; −48.4 ± 1.2 for Ca_{3,2} [Chemin et al., 2002]; and −41.5 ± 1.1 for human Ca_{3,3} [Chemin et al., 2002]), reaching maximal activation near −40 mV (Fig. 7 C and Table 2). Conversely, steady-state inactivation of TCav3, determined by measuring peak residual current after exposure to prolonged steady-state voltages (Fig. 7 C, inset), is quite similar for TCav3 with respect to other channels, especially Ca_{3,1} and Ca_{3,2} (i.e., V_{1/2} for inactivation is −74.15 ± 0.90 for TCav3 and −74.2 ± 1.1 for human Ca_{3,1} [Chemin et al., 2002] and −75.6 ± 0.7 for human Ca_{3,2} [Chemin et al., 2002]; Table 2). Altogether, the voltage properties of TCav3 indicate that it is likely more active at threshold voltages compared with other Ca_{3} channels, where the channel is subject to roughly the same amount of inactivation, but is more readily activated by depolarization.

An important and characteristic feature of T-type channels are their “window” currents, which occur at steady-state voltages near rest through a pool of constitutively open channels (Dreyfus et al., 2010), providing a constant influx of Ca^{2+} that depolarizes the cell membrane to alter cellular excitability (Cain and Snutch, 2010) and increases cytosolic Ca^{2+} to regulate cell growth and proliferation (Lory et al., 2006; Taylor et al., 2008; Senatore et al., 2012; Gackières et al., 2013). Such
a window current is evident for TCa v3, for which an overlap between channel activation and inactivation reveals a voltage range between −60 and −75 mV, where not all channels are inactivated and some degree of activation takes place (Fig. 7 C, red fill).

Kinetic properties of TCa v3 macroscopic currents are also characteristic of T-type channels

In vitro TCa v3 currents exhibit slow onset (activation) and attenuation (inactivation) at slight depolarizing voltage steps, which accelerate with stronger depolarization “tightening” current waveforms, a hallmark of Ca v3 channels that produces a crossing over of inactivation curves toward peak inward current (Fig. 7 A). Such changes in current waveforms can be quantified with time constants ($\tau$) for mono-exponential curve fits over the rise ($\tau_{\text{activation}}$) and decay ($\tau_{\text{inactivation}}$) phases of channel currents, which for TCa v3 results in a decrease in $\tau$ consistent with accelerating kinetics upon stronger depolarization (Fig. 7 D). The rate at which TCa v3 activation accelerates through depolarization is lower compared with other in vitro–expressed channels, with only a 4.13-fold drop in $\tau_{\text{activation}}$ from −50 to −10 mV versus 4.41-fold for Lymnaea Ca v3 (Senatore and Spafford, 2010), 5.50-fold for human Ca v3.2 (Gomora et al., 2002), 7.29-fold for human Ca v3.3 (Gomora et al., 2002), and 7.45-fold for human Ca v3.1 (Fig. 7 E and Table 2; Gomora et al., 2002). Likewise, acceleration of inactivation kinetics is slower, with only a 1.29-fold decrease in $\tau_{\text{inactivation}}$ for TCa v3 versus 1.76-fold for LCa v3, 1.87-fold for hCa v3.2, 1.58-fold for hCa v3.3, and 3.88-fold for hCa v3.1 (Fig. 7 E and Table 2). From this data, it is clear that the two invertebrate channels compared here, TCa v3 and the T-type channel from mollusk L. stagnalis (LCa v3), have kinetics with an overall reduced voltage dependency, especially for current activation. TCa v3 current kinetics are marginally slower across all negative voltages than other in vitro–expressed channels, with the exception of the slow Ca v3.3 channel (Table 2).

Similar to Lymnaea Ca v3, and in contrast to mammalian Ca v3 channels, TCa v3 recovers slowly from inactivation (Fig. 8, A and B; and Table 2), indicating that prolonged hyperpolarization would be required to ef-
fectively recruit the channel from depolarized membrane voltages. TCa,3 also has slow deactivation kinetics relative to mammalian channels at voltages near −70 mV (Fig. 8, C and D; and Table 2), which during action potential repolarization would result in increased inward Ca²⁺ influx. Overall, despite the noted differences, the voltage dependencies and kinetics of TCa,3 currents are remarkably similar to those of Ca v3 channels from animals that have neurons and muscle (Table 2), in particular where a low voltage of activation and rapid activation and inactivation kinetics (which allow T-type channels to contribute depolarizing currents near action potential threshold) are conserved.

Ni²⁺ block of TCa,3 Ca²⁺ currents

Early electrophysiological experiments revealed that the divalent cation Ni²⁺ could potently block low voltage-activated Ca²⁺ currents in some vertebrate preparations (Perez-Reyes, 2003). This high-affinity block was subsequently attributed only to the Ca,3.2 channel isotype, and specifically to a unique histidine residue in its domain I S3–S4 extracellular loop (His-191) that strongly binds Ni²⁺ to disrupt channel gating (Fig. 9 A; Kang et al., 2006, 2010). The recently cloned T-type channel from Drosophila also bears a histidine in this loop (albeit 2 aa positions upstream of Ca,3.2 His-191) and, not surprisingly, is also highly sensitive to Ni²⁺ (Jeong et al., 2015). Instead, TCa,3, mammalian Ca,3.1 and Ca,3.3 channels, and Lymnaea LCav,3, all lack histidines in this region (Fig. 9 A). Accordingly, all of these channels have low and remarkably similar IC₅₀ values for Ni²⁺ block: 335.0 ± 6.5 µM for TCa,3 (Fig. 9, B–D); 300.0 ± 29.2 for LCav,3 (Senatore and Spafford, 2010); 304.8 ± 6.2 for human Ca,3.1 (Kang et al., 2006); and 216 ± 9 for human Ca,3.3 (Table 2; Kang et al., 2006). The similarity in IC₅₀ values for all of these channels suggests that low-affinity Ni²⁺ block occurs through a common mechanism, where perhaps, as has been suggested for Ca,3.1, extracellular Ni²⁺ ions bind two distinct regions of the pore in a cooperative manner (Obejero-Paz et al., 2008). Such a model is perhaps applicable to TCa,3, where the Hill coefficient for Ni²⁺ block is greater than 1 (i.e., 1.18 ± 0.03; Fig. 9 D), suggesting some degree of cooperative binding. Interestingly, washout of Ni²⁺ is particularly fast for TCa,3 compared with other T-type channels (Kang et al., 2006; Senatore and Spafford, 2010), with a transient increase in peak current amplitude (I/Imax) after perfusion of extracellular Ni²⁺ is replaced with Ni²⁺-free saline (Fig. 9 C).

Ca²⁺ versus Na⁺ permeation properties of TCa,3

Recently, protostome invertebrates were found to uniquely possess alternative exons 12a and 12b, encoding alternate turret and descending helices of the domain II pore-loop (P-loop). In the freshwater mollusk
L. stagnalis, these exons were found to produce channels with extremely bifurcated permeability features: whereas channels with exon 12b (i.e., LCa v3-12b) conduct moderately mixed Ca\(^{2+}\)-Na\(^{+}\) currents under physiological conditions, LCa v3-12a is extremely Na\(^{+}\) permeant, such that less than 10% of inward current is carried by Ca\(^{2+}\) (Senatore et al., 2014). Alignment of the domain II turrets of Ca v3 channels from basal metazoans Trichoplax (TCa v3) and N. vectensis (Ca v3a) with channels from protostomes (i.e., L. stagnalis, Drosophila, and C. elegans), deuterostomes (Ciona intestinalis, human), and a premetazoan species (choanoflagellate S. rosetta) reveals that the TCav3 domain II P-loop resembles those of exon 12a–bearing channels, being smaller and containing fewer cysteines than exon 12b (Fig. S2).

We sought to assess whether the exon 12a–like turret of TCa v3 is associated with moderate Na\(^{+}\) permeability, similar to cnidarian (Lin and Spencer, 2001), mammalian (Shcheglovitov et al., 2007), and basal deuterostome (Hagiiwara et al., 1975) channels, or instead associates with extreme Na\(^{+}\) permeability, similar to exon 12a variants of Lymnaea Cav3. For this, we assessed the degree of mixing of Ca\(^{2+}\) and Na\(^{+}\) currents through TCa v3 ectopically expressed in HEK-293T cells by replacing a perfused extracellular recording solution containing 2 mM Ca\(^{2+}\) and 135 mM impermeant NMDG\(^{-}\), with one containing Na\(^{+}\) instead of NMDG\(^{-}\) (Fig. 10, A and B). Addition of Na\(^{+}\) resulted in a 42% increase in peak inward current elicited by stepping from −110 to −45 mV, which approximates the degree of Na\(^{+}\) expected to move through the channel alongside Ca\(^{2+}\) upon membrane depolarization (Shcheglovitov et al., 2007; Senatore et al., 2014).

Comparing the current increase of TCa v3 with previously published data of other cloned channels (Senatore et al., 2014; Stephens et al., 2015) reveals that the Trichoplax T-type is most similar to the least Ca\(^{2+}\)-selective mammalian isotype Cav3.3 (i.e., 45%), whereas the exon 12b variant of LCa v3 exhibits a larger increase of 153% in current amplitude and human Ca v3.1 an increase of only 27%. In stark contrast, LCa v3-12a undergoes a striking 1,440% increase in current amplitude upon perfusion of external Na\(^{+}\) (Fig. 10 B), reflecting its dramatic Na\(^{+}\) permeability. Thus, in the presence of Ca\(^{2+}\), TCa v3 appears to conduct only moderately mixed Ca\(^{2+}\)-Na\(^{+}\) currents, in a range similar to that of other in vitro–expressed T-type channels, with the exception of the highly Na\(^{+}\)-permeant LCa v3-12a.

Ca\(^{2+}\) versus Ba\(^{2+}\) permeability does not predict the amplitude of mixed divalent-monovalent cation currents through T-type channels

T-type channels are highly permeable to divalent cation Ba\(^{2+}\), where for reasons that are unclear, the three rat Ca v3 channel isoforms have dissimilarities with respect to macroscopic Ca\(^{2+}\) versus Ba\(^{2+}\) currents in vitro (Talavera and Nilius, 2006): Ca v3.1 conducts larger Ca\(^{2+}\) currents, Ca v3.2 conducts larger Ba\(^{2+}\) currents, and Ca v3.3 conducts equal Ca\(^{2+}\) and Ba\(^{2+}\) currents (McRory et al., 2001). Here, we found TCa v3 to be similar to rat Ca v3.1, where replacing 2 mM external Ba\(^{2+}\) with equimolar Ca\(^{2+}\) by perfusion produced an increase in current amplitude upon membrane depolarization from −110 mV (Fig. 10 C), with a 2.29-fold increase in maximal peak

\[ V_{\text{max}} = \frac{I_{\text{max}}}{C_{\text{Ca}}} \text{V} \]
The Trichoplax adhaerens T-type calcium channel | Smith et al.

inward current visible on IV plots (Fig. 10 D). It appears as though the difference in macroscopic Ca$^{2+}$ versus Ba$^{2+}$ current amplitude for TCa,3 is not attributable to differences in activation/inactivation kinetics in the presence of either ion, as was shown for rat Ca,3.1 (Khan et al., 2008), where mono-exponential curves fitted over activation and inactivation phases of the current waveforms ($\tau_{\text{act}}$ and $\tau_{\text{inact}}$, respectively) reveal statistically indistinguishable kinetics under one-way ANOVA. Plotted values represent mean ± SE. (D) Corresponding IV plots for mean peak Ca$^{2+}$ versus Ba$^{2+}$ currents (±SE) reveal a 2.29-fold increase in maximal peak inward current when Ca$^{2+}$ is present in the extracellular solution instead of Ba$^{2+}$. (E) Replacing 100 mM impermeant external cation NMDG$^+$ with Na$^+$, the presence of invariant 2 mM external Ba$^{2+}$, produces a 51% increase in peak inward current through TCa,3 elicited by a voltage ramp from −110 to 100 mV (black and red current traces, respectively), indicative of a moderate mixing of Ba$^{2+}$ and Na$^+$ ions in macroscopic currents. (F) Mean percent increase in peak inward current using the voltage ramp protocol (±SE), upon replacement of 135 mM external NMDG$^+$ with equimolar Na$^+$ in the presence of 2 mM external Ba$^{2+}$, for TCa,3 compared with previously published data for other cloned Ca,3 channels (Stephens et al., 2015). Asterisks depict statistical significance (p-values) for comparisons of means for increased inward current with Na$^+$ relative to TCa,3 (generated by one-way ANOVA; *, P ≤ 0.05; ***, P ≤ 0.0005).
Ca\(^{2+}\) block of TCa\(_3\), Na\(^{+}\) currents indicates high-affinity pore binding of external Ca\(^{2+}\), similar to human Ca\(_{3.1}\)

At extremely low concentrations of external Ca\(^{2+}\), all Ca\(_v\) channels conduct prominent Na\(^{+}\) currents. Titrating increasing concentrations of extracellular Ca\(^{2+}\) leads to a block of Na\(^{+}\) current, with a sensitivity that reflects the affinity of Ca\(^{2+}\) to binding sites located in the pore. As [Ca\(^{2+}\)]\(_{\text{out}}\) increases, the blocking effect reaches saturation levels, then Ca\(^{2+}\) itself becomes abundant enough to occupy multiple sites within the pore, leading to Ca\(^{2+}\) permeation (Tsien et al., 1987; Sather and McCleskey, 2003; Cheng et al., 2010; Buraei et al., 2014; Tang et al., 2014). This property of a decrease in Na\(^{+}\) current amplitude and a subsequent rise in Ca\(^{2+}\) current as [Ca\(^{2+}\)]\(_{\text{out}}\) increases (known as the Ca\(^{2+}\) block effect), is exemplified by peak currents through human Ca\(_{3.1}\) elicited by repeating voltage steps from −110 to −35 mV, whereas external Ca\(^{2+}\) is perfused from 1 nM to 10 mM in the presence of invariant 60 mM external Na\(^{+}\) (Fig. 11 A; Senatore et al., 2014). Notably, the TCa\(_3\) Ca\(^{2+}\)-block data are similar to previously published data for human Ca\(_{3.1}\) (Senatore et al., 2014; Stephens et al., 2015), falling between previously published data for human Ca\(_{3.1}\) (Senatore et al., 2014; Stephens et al., 2015), where at 10 µM [Ca\(^{2+}\)]\(_{\text{out}}\), 97.3% and 96.1% of peak Na\(^{+}\) (82.6%), whereas the highly sodium-permeant LCa\(_{3.1}\) shows 13.8- and 9.4-fold increases in peak current caused by an emergent inward current upon addition of external Na\(^{+}\). Comparing the fold increase in peak macroscopic current through TCa\(_3\) elicited by ramping the voltage from −110 to 100 mV in the presence of 2 mM Ba\(^{2+}\) and either 100 mM Na\(^{+}\) or NMDG\(^{+}\) (Fig. 10 E) with previously published data from other in vitro–expressed channels (Senatore et al., 2014; Stephens et al., 2015) reveals a similar ranking in Na\(^{+}\) permeation as observed in the presence of 2 mM external Ca\(^{2+}\): LCa\(_{3.12a}\) >> LCa\(_{3.12b}\) > TCa\(_3\) > hCa\(_{3.1}\) > hCa\(_{3.2}\) > hCa\(_{3.1}\) (i.e., compare Fig. 10, B and F).

Ca\(^{2+}\) block, and not Ca\(^{2+}\) selectivity, determines the degree of Na\(^{+}\) permeation through T-type channels

To further understand the Na\(^{+}\) permeation properties of TCa\(_3\), we characterized its Ca\(^{2+}\) versus monovalent cation selectivity by measuring zero-current reversal potentials (E\(_{\text{rev}}\)) under bi-ionic conditions (i.e., 4 mM Ca\(^{2+}\)\(_{\text{out}}\) and 100 mM Li\(^{+}\), Na\(^{+}\), K\(^{+}\), or Cs\(^{+}\)). The reversal potential of peak bi-ionic currents is determined by the pore’s preference for inward-permeating Ca\(^{2+}\), which pulls E\(_{\text{rev}}\) toward more positive voltages, versus outward-permeating monovalent cations (i.e., X\(^{+}\), where X = Li, Na, K, or Cs), which pull E\(_{\text{rev}}\) toward more negative voltages. Depolarizing voltage steps from −90 to 70 mV under the four bi-ionic conditions (i.e., Ca\(^{2+}\)\(_{\text{out}}\)-Li\(^{+}\), Ca\(^{2+}\)\(_{\text{out}}\)-Na\(^{+}\), Ca\(^{2+}\)\(_{\text{out}}\)-K\(^{+}\), or Ca\(^{2+}\)\(_{\text{out}}\)-Cs\(^{+}\)) produce markedly different outward current components for TCa\(_3\), with decreasing amplitudes from Li\(^{+}\) to Na\(^{+}\) to K\(^{+}\) to Cs\(^{+}\) (Fig. 12 A), reflecting the pore’s decreasing permeability to monovalent cation flow according to the Eisenman selectivity model (i.e., ions with smaller radii are more permeable through a narrow pore: Li\(^{+}\) < Na\(^{+}\) < K\(^{+}\) < Cs\(^{+}\) with respect to radius; Eisenman et al., 1967; Eisenman and Horn, 1983). Correspondingly, E\(_{\text{rev}}\) values for the four bi-ionic IV plots for TCa\(_3\) have leftward shifts corresponding to increased monovalent permeation from Cs\(^{+}\) to Li\(^{+}\) (Fig. 12 B). Converting E\(_{\text{rev}}\) values to permeability ratios P\(_{\text{Ca}}\)/P\(_{X}\) using the bi-ionic Nernst equation (Senatore et al., 2014), which reflect the pore’s preference for Ca\(^{2+}\) over monovalent X\(^{+}\), reveals that the Trichoplax channel is poorly selective for Ca\(^{2+}\) over X\(^{+}\) monovalents compared with human Ca\(_{3.1}\) ( Stephens et al., 2015), falling between previously published values for Lymnaea LCa\(_{3.12a}\) and LCa\(_{3.12b}\) variants for P\(_{\text{Ca}}\)/P\(_{\text{Na}}\) and P\(_{\text{Ca}}\)/P\(_{\text{K}}\) (Fig. 12 C; Senatore et al., 2014). Interestingly, TCa\(_3\) is the most Li\(^{+}\)-permeable channel, whereas the Cs permeability for all non-deuterostome channels is roughly equal and significantly higher than human Ca\(_{3.1}\).

Ca\(^{2+}\) versus X\(^{+}\) permeability features of T-type channels are also reflected in the rectification of macroscopic bi-ionic currents, where three conductance states are evident on IV plots: (1) an inward conductance at voltages where the driving force favors inward flow of Ca\(^{2+}\) (G\(_{\text{in}}\)), (2) a conductance through E\(_{\text{rev}}\) where a
transition between inward Ca\(^{2+}\) and outward X\(^{+}\) occurs, \((G_{\text{Rev}})\); and (3) an outward conductance where driving force favors outward X\(^{+}\) flow \((G_{\text{Out}}; \text{Fig. 12 D and Fig. S3})\). Comparison of the three conductance states of TCav3 with previously published data for other in vitro–expressed T-type channels (Senatore et al., 2014; Stephens et al., 2015) corroborates a low Ca\(^{2+}\) selectivity for the Trichoplax Ca v3 channel compared with human Ca v3.1. Both \(G_{\text{Rev}}\) and \(G_{\text{Out}}\) values for TCav3, which reflect permeability to monovalent cations, are significantly larger than those of Ca v3.1, regardless of monovalent cation type (Fig. 12 E). Indeed, Ca v3.1 is very ineffective at conducting outward monovalent currents, even at extremely depolarized potentials >60 mV (Fig. 12 D and Fig. S3). Ca v3.1 also has the largest conductance for inward Ca\(^{2+}\) flow \((G_{\text{In}})\), but noticeably, under the most physiological conditions with K\(^{+}\) present in the internal saline, the \(G_{\text{In}}\) Ca\(^{2+}\) conductance for TCav3 encroaches on that of Ca v3.1 (i.e., means are not statistically different; Fig. 12 E). At the other extreme, the Lymnaea channel LCav3-12a has the lowest conductance for inward Ca\(^{2+}\) \((G_{\text{In}})\) and the largest monovalent conductances through \(E_{\text{Rev}}\) and outwards \((G_{\text{Rev}}\) and \(G_{\text{Out}}\), respectively; Fig. 12 D and Fig. S3). Collectively, the bi-ionic reversal potential data indicate that the TCav3 channel pore is poorly selective for Ca\(^{2+}\) over monovalents compared with human Ca v3.1, with bi-ionic selectivity properties more similar to those of highly Na\(^{+}\)-permeant LCav3-12a and the more Ca\(^{2+}\)-selective LCav3-12b channels (Table 2).

In light of these data, it is apparent that Ca\(^{2+}\) block, and not Ca\(^{2+}\) selectivity, is the major determinant for the degree of Na\(^{+}\) that permeates through TCav3 and other T-type channels. Indeed, the efficiency of Ca\(^{2+}\) block for the various cloned T-type channels \((\text{Ca v3.1} > \text{TCav3} > \text{LCav3-12b} > \text{LCav3-12a}; \text{Fig. 11})\) correlates with their degree of Na\(^{+}\) permeation (e.g., 21.0%, 29.6%, 60.5%, and 93.5% of total current carried by Na\(^{+}\), respectively; measured by dividing percentage increases in peak current shown in Fig. 10 B by that same value plus 100%).

**DISCUSSION**

TCav3 is the most divergent metazoan T-type calcium channel

Ca v3 channels appear to have emerged upwards of a billion years ago in a eukaryotic ancestor of choanoflagellates and metazoans (Morris, 1998), being present in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014). We were unable to find a Ca v3 channel homologue in the genome of S. rosetta (Fairclough et al., 2013; Moran and Zakon, 2014).
Figure 12. Bi-ionic reversal potential analysis of TCa₃ Ca²⁺ versus monovalent cation permeability and comparison with other cloned T-type channels. (A) Sample current traces recorded for TCa₃ recorded under different bi-ionic conditions, with 4 mM [Ca²⁺]ₘₐₓ and 100 mM [X⁺]ᵢₙ (X = Li, Na, K, or Cs), reveal increasing outward current amplitudes from Cs⁺ to K⁺ to Na⁺ to Li⁺, reflecting increasing permeability with decreasing ionic radius, consistent with the Eisenman model of permeability through a narrow pore (Eisenman et al., 1967; Eisenman and Horn, 1983). (B) Decreasing permeability for Ca²⁺ over X⁺, from Cs⁺ to Li⁺, is measured by zero-current reversal potentials (Eᵣₑᵥₚ) on IV plots, which represent voltages at which inward-flowing Ca²⁺ and outward-flowing X⁺ ions are at equilibrium. (C) Converting Eᵣₑᵥₚ values to relative permeabilities for Ca²⁺ over X⁺ (i.e., Pₐ₇/Pₓ), using the bi-ionic Nernst equation, reveals that TCa₃ is poorly selective for Ca²⁺ over X⁺ ions, with a Ca²⁺-selectivity profile that falls between the extremely Na⁺-permeable LCa₃-12a and the moderately Na⁺-permeable LCa₃-12b. (D) A zoomed-out view of the IV plot in B reveals three conductance states for TCa₃ (i.e., the slope of current I/Imₐₓ as a function of depolarizing voltage), with an inward conductance (Gᵣₑᵥₚ) at voltages that favor inward Ca²⁺ flow, a rectifying conductance across the reversal potential (Gᵣₑᵥₚ) where Ca²⁺ and X⁺ ions are competing for permeation, and an outward conductance (Gₑᵥₚ) where the voltage favors outward flow of monovalent cations. (E) Comparing the three different conductance states for TCa₃ with those of the two exon 12 variants of LCa₃ and the human Cav3.1 channel places TCa₃ somewhere between Cav3.1 and LCa₃-12b. Asterisks depict statistical significance (p-values) for differences between mean conductance relative to TCa₃ (one-way ANOVA; *, P ≤ 0.05; **, P ≤ 0.005; ***, P ≤ 0.0005). All values for B–E represent mean ± SE.
Moroz et al., 2014; Fernandez-Valverde et al., 2015), suggesting that these two phyla lost Ca\textsubscript{3} channels.

Analysis of various Ca\textsubscript{3} channel gene exon/intron structures revealed a general trend toward increased intron/exon number from choanoflagellates to vertebrates, with the Salpingoeca Ca\textsubscript{3} gene bearing 13 exons from start codon to stop codon, Trichoplax Ca\textsubscript{3} bearing 28 exons, Nematostella Ca\textsubscript{3a} bearing 30 exons, and mouse Cav3.1 bearing 38 exons (Fig. 3). Such an increase in intron number from premetazoans, to early diverging metazoans, to bilaterians is consistent with observed trends at the whole-genome level (King et al., 2008). Interestingly, Ca\textsubscript{3} channel genes from bilaterians appear to have undergone the most significant changes in intron/exon structure within coding sequences for channel structures associated with modulation of function, such as optional exon 8b found in mouse Ca\textsubscript{3.1} and Lymnaea Ca\textsubscript{3}, which regulates channel membrane expression (Senatore and Spafford, 2012); mouse exons 14–17 in the II–III linker, which serve as a hotbed for modulation by kinases and G-proteins (Chemin et al., 2006; Perez-Reyes, 2010b; Senatore et al., 2012); exons 25c and 26 in the III–IV linker, which in both vertebrates and protostome invertebrates cause alterations in channel voltage-gating and kinetics (Senatore and Spafford, 2012); the C terminus, where vertebrate Ca\textsubscript{3} channels physically interact with other ion channel types such as Ca\textsuperscript{2+}-modulated A-type K\textsuperscript{+} channels (Anderson et al., 2010); and SNARE proteins, which facilitate T-type channel involvement in low-threshold exocytosis (Weiss et al., 2012). Indeed, if a similar pattern extends to numerous other gene orthologues in the metazoan genome, it might account for some of the apparent increase in anatomical, cellular, and molecular complexity of vertebrates and bilaterians compared with more early diverging animals (Valentine et al., 1994), in spite of comparable total gene counts.

Despite its comparative simplicity at the gene structure level, the TCa\textsubscript{3} protein sequence retains all of the hallmark structural features of four-domain channels, with four homologous repeat domains, each containing extracellular turret-containing P-loops separated by pore-forming S5 and S6 helices, and voltage-sensor modules (S1 to S4 helices), with S4 helices packed with positively charged lysine (K) and arginine (R) residues critical for voltage sensing (Fig. 1A; Catterall, 2010). In addition, TCa\textsubscript{3} bears the three most prominent structural features that distinguish Ca\textsubscript{3} channels from Ca\textsubscript{1} and Ca\textsubscript{2} types: (1) a selectivity filter motif with two aspartates (D) instead of two glutamates (E) in the P-loops of domains III and IV (i.e., EEDD vs. EEEE); (2) the absence of a calmodulin-binding isoleucine-glutamine (IQ) motif in the C terminus, which permits modulation of Ca\textsubscript{1} and Ca\textsubscript{2} channels by cytoplasmic Ca\textsuperscript{2+} influx (Ben-Johny et al., 2014); and (3) a predicted helix-turn-helix gating brake structure in the domain I–II intracellular linker, in an analogous region where Ca\textsubscript{1} and Ca\textsubscript{2} channels bind accessory Ca\textsubscript{\beta} subunits via a distinct structure called the α interaction domain (AID; Perez-Reyes, 2010a). The absence of an AID in T-type channels highlights another distinguishing feature, which is a lack of dependence on Ca\textsubscript{\beta} subunits. For Ca\textsubscript{1} and Ca\textsubscript{2} channels, Ca\textsubscript{\beta} as well as Ca\textsubscript{\alpha\beta} subunits are obligate counterparts that complex with the channels to regulate gating, trafficking, and proteolytic turnover (Arikakh and Campbell, 2003; Richards et al., 2004; Altier et al., 2011). Instead, T-type channels function as separate entities, with an autonomous gating brake serving in lieu of the AID/Ca\textsubscript{\beta} subunit, which nevertheless also regulates channel gating (Perez-Reyes, 2010a). Even the most basal of all known T-type channels, from S. rosetta, bears a predicted gating brake motif in its I–II linker (Fig. 2D). The structural distinction between AIDs of high voltage–activated Ca\textsubscript{1}/Ca\textsubscript{2} channels and gating brakes of low voltage–activated Ca\textsubscript{3} channels thus appears to have ancient origins predating Metazoa. However, given the similar helical arrangement that extends into the cytoplasm from the domain I S6 helix, it is conceivable that both structures evolved via divergence from a helical structure present in an ancient Ca\textsubscript{3} channel ancestor of Ca\textsubscript{1}/Ca\textsubscript{2} and Ca\textsubscript{3} channels.

Localization of TCa\textsubscript{3} channel in gland cells

In bilaterians, the three types of Ca\textsubscript{3} channels are specialized to carry out distinct and pivotal roles in neurons and muscle, and other excitable cell types, where they translate electrical signals of Na\textsubscript{+}, K\textsubscript{+}, and synaptic ligand-gated cation channels into cellular events by coupling with Ca\textsuperscript{2+}-sensitive cytoplasmic proteins (Berridge, 2006; Rizzuto and Pozzan, 2006). Ca\textsubscript{1} channels are most classically associated with excitation-contraction coupling in muscle, as well as excitation-transcription coupling in neurons and muscle, and Ca\textsubscript{2} channels are associated with fast presynaptic exocytosis of neurotransmitters (excitation-secretion coupling; Catterall, 2011). Instead, Ca\textsubscript{3} channels have long eluded such a stereotyped and ubiquitous classification, where their roles tend to vary depending on cell type, ranging from regulating cellular excitability in select neurons and other excitable cells, to driving low-threshold exocytosis in select neurons and neurosecretory cells, to regulating tone and contraction of various muscle cell types (Perez-Reyes, 2003; Senatore et al., 2012).

Trichoplax is very interesting in its highly simplified cellular body plan, bearing only six cell types: ciliated dorsal and ventral epithelial cells, with ventral epithelial cells responsible for ciliary locomotion (i.e., gliding along hard surfaces); crystal cells, which bear internal birefringent crystals with unknown function (Smith et al., 2014); fiber cells, positioned between the epithelial...
cell layers and proposed to be contractile in nature (Behrendt and Ruthmann, 1986; Smith et al., 2014); gland cells, proposed to play roles in paracrine signaling and which resemble neurons and neurosecretory cells in their expression of exocytotic SNARE proteins and membrane-apposed vesicles (Grell and Ruthmann, 1991; Smith et al., 2014); and ventral lipophil cells, also apparently exocytotic in nature but specialized for secretion of hydrolytic enzymes for external digestion of algae during feeding (Smith et al., 2014, 2015). The apparent morphological, anatomical, and ultrastructural similarity of Trichoplax cell types with those from more complex animals (i.e., epithelial, neuron/neuroendocrine, muscle, and digestive) is suggestive of homology at the level of genes and proteins. In accordance, the presence of numerous genes in the Trichoplax genome crucial for cell-specific functioning (Srivastava et al., 2008), including those for generating and packaging neurotransmitters and neuropeptides (Nikitin, 2015), cellular excitability (e.g., Na,2 and Kv channels, K+ leak channels; Senatore et al., 2016), and muscle contraction (Steinmetz et al., 2012), suggests that homologous molecular processes are taking place in some of these cell types.

Here, we extend the apparent homology of gland cells with neurons and neuroendocrine cells in our localization of TCa,3 to this cell type (Fig. 4), suggesting that the cells undergo rapid fluxes in membrane voltage and transient rises in cytoplasmic [Ca2+], perhaps driving graded exocytosis before action potential thresholds as occurs in select vertebrate and invertebrate neurons and neurosecretory cells (Carbone et al., 2006; Weiss and Zamponi, 2013; Senatore et al., 2016). In vertebrates, a direct interaction between Ca v3 channels and SNARE proteins syntaxin-1A and SNAP-25 has been documented (Weiss et al., 2012), tethering the channels close to Ca2+-sensitive elements of the exocytotic machinery. The expression of TCa,3 in gland cells implies that the use of T-type channels in regulating excitation and secretion of neuron/neuroendocrine-like cells might have evolved very early on, at least in the ancestor of placozoans and cnidarians/bilaterians, but perhaps even further back, in the single-celled ancestor of choanoflagellates and metazoans, which possessed a T-type channel gene as well as the core elements of the exocytotic apparatus (King et al., 2008; Fairclough et al., 2013; Moran and Zakon, 2014).

**Difficult expression of TCa,3 in HEK-293T cells**

Our first efforts to express the cloned TCa,3 channel in HEK-293T cells for electrophysiological recording were unsuccessful. Instead, we found that coexpression with rat Caβ1b and Caα2δ1 accessory subunits of high voltage-activated Ca,1 and Ca,2 channels dramatically increased channel expression either as a fusion protein with EGFP, or as a separate protein recordable via whole-cell patch clamp. Interestingly, Caβ and Caα2δ subunits increase membrane expression of high voltage-activated Ca, channels in part by blocking their internalization and proteasomal degradation (Bernstein and Jones, 2007; Altier et al., 2011; Dolphin, 2012), although the process seems to depend on direct interactions between the subunits and the channel proteins. We do not necessarily expect direct protein–protein interaction between TCa,3 and the Caβ1b and Caα2δ1 accessory subunits because such an interaction has yet to be reported for any other cloned vertebrate or invertebrate T-type channel (Dubel et al., 2004; Senatore and Spafford, 2010; Dawson et al., 2014; Cens et al., 2015; Jeong et al., 2015). However, given the overlapping emergence of Ca,1/Ca,2 channels, Ca,3 channels, and the Caβ subunit in a premetazoan ancestor (Dawson et al., 2014; Moran and Zakon, 2014), the possibility exists that ancestral T-type channels and those from extant basal organisms such as Trichoplax physically interact with high voltage-activated Caβ1b and Caα2δ1 subunits. Here, we found that rat Caβ1b and Caα2δ1 subunits significantly increased ectopic expression of GFP expressed in the absence of TCa,3 (Fig. 6), indicating that their effect on ectopic protein expression might at least in part be a result of nonspecific processes.

The biophysical properties of TCa,3 are consistent with roles in regulating gland cell excitability

One of the most clear cellular functions of Ca,3 channels is regulating excitability (Perez-Reyes, 2003; Senatore et al., 2012), invoking their low voltages of activation and fast, transient kinetics. For example, mammalian Ca,3.2 calcium channels are enriched in pain-sensing neurons, where they amplify depolarizing sensory in-
puts to increase nociceptive signaling to the spinal cord (Bourinet et al., 2005; Rose et al., 2013). Similarly, in the brain, neuronal Ca,3 channels are enriched along dendrites (McKay et al., 2006), where they boost postsynaptic excitatory potentials to increase the likelihood of eliciting action potentials (Perez-Reyes, 2003; Senator et al., 2012). In some cases, the rapid kinetics and low voltages of activation of Ca,3 channels enable them to function in lieu of Na, channels where they can drive Ca,2+ action potentials, as occurs in striated muscle cells from jellyfish (Lin and Spencer, 2001), snail cardiomyocytes (Yeoman et al., 1999; Senator et al., 2014), and C. elegans pharyngeal muscle (Steger et al., 2005).

Here, we show that the biophysical properties of the Trichoplax Ca,3 channel are consistent with a role in regulating excitability in gland cells. Inward Ca,2+ currents recorded from HEK cells expressing recombinant TCa,3 emerge upon slight membrane depolarization from a holding potential of −110 mV (Fig. 7, A and B), indicating that like all other in vitro–expressed Ca,3 channels, TCa,3 is low voltage activated. In fact, TCa,3 has the lowest voltage dependency for activation of any cloned T-type channel, with a 5 mV more negative maximal peak inward current than Lymnaea Ca,3, and 10 to 20 mV more negative than the three mammalian isotypes, Ca,3.1 to Ca,3.3 (Fig. 7 B and Table 2). Accordingly, Boltzmann transformation of the peak current–voltage (IV) plot for TCa,3, into an activation curve (Fig. 7 C), reveals a half-maximal activation considerably left-shifted compared with other Ca,3 channels. Instead, the channel’s half-maximal steady-state inactivation is roughly similar to those of other channels (Table 2). TCa,3 currents also have reasonably fast activation and inactivation kinetics, which although marginally slower than Lymnaea Ca,3 and the mammalian Ca,3.1/Ca,3.2 isotypes, are considerably faster than those of Ca,3.3, the slowest of the vertebrate T-type channels (Table 2). TCa,3 is thus capable of conducting fast inward Ca,2+ currents upon slight membrane depolarization, with a lower voltage threshold than other T-type channels, while being equally subject to voltage-dependent inactivation. These features indicate that TCa,3 is poised to be more active at threshold voltages compared with other T-type channels. Furthermore, the particularly slow deactivation kinetics for TCa,3, at voltages near −70 mV (Table 2), would serve to counter K, channel–driven action potential repolarization, effectively widening action potentials and increasing net Ca,2+ influx. Overall, the voltage dependencies and kinetic properties of TCa,3 are most similar to those of fellow invertebrate T-type, Lymnaea Ca,3, and least to those of mammalian Ca,3.3 (Table 2). What is striking is that upon side-by-side comparison of biophysical properties of various cloned Ca,3 channels, the structurally divergent Trichoplax homologue, which is >600 million years separated from mammalian isotypes, is more similar to mammalian Ca,3.1 and Ca,3.2 than is Ca,3.3. Indeed, there appear to have been strong evolutionary constraints on the TCa,3 channel to retain a core set of biophysical properties, suggesting that the need for its cellular contributions are conserved even in the absence of neurons and muscle.

An important caveat toward speculation about the physiological roles for TCa,3 in vivo is that its contributions would ultimately depend on the membrane potential, which is controlled by a milieu of electrogenic proteins. Although Trichoplax has the majority of these electrogenic genes (Srivastava et al., 2008; Senator et al., 2016), suggesting that some of its cells have polarized resting membrane potentials and exhibit rapid fluxes in membrane voltage such as action potentials, the membrane properties of Trichoplax cells have yet to be reported. We and others have attempted intracellular recording of isolated Trichoplax cells, but their small size (<10-μm diameter) and particular membrane features make obtaining a gigaohm seal during patch-clamp recording particularly difficult. Based on the biophysical properties of TCa,3, we can speculate that if the resting membrane potential of a typical Trichoplax cell sits above ~60 mV, the channel would not contribute to excitability because of inactivation (Fig. 7 C). However, transient hyperpolarization from such potentials could recruit the channel by removing inactivation, where it would contribute to postinhibitory rebound (PIR) excitation. In mammals, T-type channel-mediated PIR excitation plays an important role in certain neuronal circuits, such as the thalamus, where postinhibitory Ca,2+ spikes support rhythmic bursts of action potentials that project to the cortex and gate sensory information during non-REM sleep (Lee et al., 2004; Anderson et al., 2005; Grunelli et al., 2006). Notably, TCa,3 and the Ca,3 channel from Lymnaea have a slower recovery from inactivation than mammalian channels (Table 2), so they would require more prolonged hyperpolarization to be recruited for PIR excitation. Finally, even if Trichoplax cells do not undergo rapid changes in membrane voltage, T-type channels could nevertheless contribute a consistent steam of Ca,2+ into the cytosol through a window current (Fig. 7 C), which can be used by cells to transition between bimodal resting membrane potentials (Dreyfus et al., 2010) and are associated with cellular proliferation during development and cancer (Lory et al., 2006; Senator et al., 2012; Gackière et al., 2013).

TCa,3 resembles mammalian Ca,3 channels with respect to Na, permeation

Previous work examining altered Na, permeation of the Lymnaea T-type channel, caused by alternative splicing of exons 12a and 12b in a region of the domain II P-loop called the turret, revealed that factors outside of the se-
selectivity filter can nevertheless have important consequences for defining Ca\(^{2+}\) versus Na\(^{+}\) permeation. However, based on these studies, it is difficult to reconcile differences in permeation properties among Ca,3 channels purely on the structure of exon 12, where in *Lymnaea*, the smaller exon 12a imposes extreme Na\(^{+}\) permeability (i.e., 93.5% of current carried by Na\(^{+}\); Fig. 10 B: \(1,440 \div 1,540\% = 93.5\%\)), whereas in mammalian channels, homologous 12a-like exons produce only moderate Na\(^{+}\) permeability (~21.0%, 24.3%, and 31.3% for Ca,3,1, Ca,3,2, and Ca,3,3, respectively). We found the basal TCa,3 channel to resemble mammalian channels, with ~29.6% of inward current carried by Na\(^{+}\), making it statistically indistinguishable from Ca,3,2 and Ca,3,3 (Table 2). Indeed, a low Na\(^{+}\) permeability for T-type channels bearing exon 12a-like turrets extends to other non-protostome channels that span the lineages between placozoa and mammals, including those from cnidarians (i.e., jellyfish; Lin and Spencer, 2001) and deuterostomes (i.e., echinoderm starfish eggs; Hagiwara et al., 1975), where T-type currents were reported to be carried mostly by Ca\(^{2+}\). Based on the available data, one explanation for the emergence of altered Na\(^{+}\) permeation in the snail and other protostome T-type channels via exon 12 splicing is that after duplication of exon 12, structural alterations took place outside of the exon 12 region, rendering 12a-bearing channels more Na\(^{+}\) permeable. The duplicated exon 12b, unique to protostomes, was possibly adapted to retain Ca\(^{2+}\) conducting channels via enlargement relative to exon 12a by ~11 aa and increase in cysteine content from 0–3 to ~5. In *Lymnaea*, exon 12b produces a channel more in line with non-protostome 12a-like channels, from *Trichoplax* through to mammals, with only ~60.5% of current carried by Na\(^{+}\).

Interestingly, the degree of co-permeation of Na\(^{+}\) alongside Ca\(^{2+}\) for the various cloned T-type channels seems to hold true even in the presence of Ba\(^{2+}\), which can exhibit increased or decreased permeation relative to Ca\(^{2+}\) in a channel-dependent manner. Like rat Ca,3,1, TCa,3 conducts larger Ca\(^{2+}\) currents than Ba\(^{2+}\) currents in vitro, whereas rat Ca,3,2, LCa,3-12a, and LCa,3-12b all conduct larger Ba\(^{2+}\) currents and rat Ca,3,3 conducts equal Ca\(^{2+}\) and Ba\(^{2+}\) currents (McRory et al., 2001). Despite these differences, the pattern of fold increases in peak inward current for the various channels upon replacement of impermeant external NMDG\(^{+}\) with Na\(^{+}\) is consistent regardless of whether Ca\(^{2+}\) or Ba\(^{2+}\) is present in the extracellular solution (Fig. 10). As such, it appears as though the factors that determine macroscopic conduction preference among divalent cations are different from those that determine preference between divalent versus monovalent cations.

Notably, a previous study found that NMDG\(^{+}\) might directly block inward current through T-type channels (Khan et al., 2008), potentially confounding loss of current amplitude caused by replacement of Na\(^{+}\) in our experiments. However, for the snail T-type channel exon 12a and 12b variants, we previously found that replacement of Na\(^{+}\) with impermeant Tris\(^{+}\) resulted in a similar pattern of current attenuation compared with NMDG\(^{+}\) (Senatore, 2012), suggesting that the major effect on T-type channel current amplitude in these experiments is caused by Na\(^{+}\) depletion, and not NMDG\(^{+}\) block.

**Ca\(^{2+}\) block versus Ca\(^{2+}\) over Na\(^{+}\) selectivity in defining T-type channel cation permeability**

We sought to identify different aspects of cation permeation through T-type channels that could account for their varying Na\(^{+}\) permeabilities. For high voltage-activated Ca,1 and Ca,2 channels, which are considerably better than T-types at selecting for Ca\(^{2+}\) (e.g., compare 21–90% Na\(^{+}\) current for Ca,3 channels with <0.1% for Ca,1/Ca,2; Tsien et al., 1987; Sather and McCleskey, 2003; Shcheglovitov et al., 2007; Cheng et al., 2010; Burai et al., 2014; Tang et al., 2014), selectivity for Ca\(^{2+}\) is attributed to the ability of the ion to associate with a high-affinity binding site at the extracellular surface of the pore to repel and block inward Na\(^{+}\) flux (i.e., Ca\(^{2+}\) block). T-type channels are also expected to bind Ca\(^{2+}\), but their reduced selectivity is attributed to a ~10-fold lowered binding affinity and reduced Ca\(^{2+}\) block (Shcheglovitov et al., 2007). We compared the Ca\(^{2+}\) block properties of various Ca,3 channels, revealing that TCa,3 shares with mammalian channels a potent Ca\(^{2+}\) block, indicated by rapidly attenuating Na\(^{+}\) currents as Ca\(^{2+}\) is incrementally added to the extracellular solution (Fig. 11). By stark contrast, exon 12 variants of LCa,3 exhibit a reduction in Ca\(^{2+}\) block that is most extreme for LCa,3-12a, for which the Ca\(^{2+}\) titration curve does not exhibit the classic U shape (where decreasing Ca\(^{2+}\)-blocked Na\(^{+}\) currents gradually give way to increasing Ca\(^{2+}\) currents as [Ca\(^{2+}\)]\(_{\text{out}}\) increases; Fig. 11 A). Instead, the channels exhibit continued decline through to 10 mM [Ca\(^{2+}\)]\(_{\text{out}}\), reflecting dramatically reduced Ca\(^{2+}\) binding affinity in the pore. Altogether, the Ca\(^{2+}\) block properties of the different Ca,3 channels (Fig. 11) correlate with their respective Na\(^{+}\) permeabilities, apparent in Na\(^{+}\)/NMDG\(^{+}\) replacement experiments (Fig. 10 B): TCa,3 and human Ca,3,1 have the most potent Ca\(^{2+}\) block and lowest Na\(^{+}\) permeability, and LCa,3-12a and LCa,12b have reduced Ca\(^{2+}\) block proportional to their respective increases in Na\(^{+}\) permeability.

However, we point out a minor inconsistency between our Ca\(^{2+}\)/Na\(^{+}\) permeation data (Fig. 10) and our Ca\(^{2+}\) block data (Fig. 11). Whereas the Ca\(^{2+}\) block data suggests that at near-physiological external Ca\(^{2+}\) concentrations (i.e., 1 mM [Ca\(^{2+}\)]\(_{\text{out}}\)), most of the Na\(^{+}\) current has been blocked for all T-type channels (Fig. 11, A and B), replacement of 135 mM NMDG\(^{+}\) with Na\(^{+}\) in the presence of 2 mM [Ca\(^{2+}\)]\(_{\text{out}}\) causes significant increases in peak inward current (most marked for
LCa,3-12a), reflecting additive Na⁺ currents over already present Ca²⁺ currents (Fig. 10, A and B). So a question arises: why in 2 mM Ca²⁺ can you observe a considerable additive Na⁺ current via NMDG⁺ replacement, whereas 1–3 mM Ca²⁺ seems to mostly block the Na⁺ currents? We explain this inconsistency by noting that in Ca²⁺ block experiments, there are considerable residual currents, ranging in amplitudes from 100–200 pA (i.e., for LCa,3-12b) to 100–800 pA (for LCa,3-12a), which persist despite saturation in the Ca²⁺ block effect. We suggest that these residual currents represent combined Ca²⁺/Na⁺ currents, which would be differentially attenuated if the Na⁺ ions were to be replaced with impermeant NMDG⁺, consistent with the Na⁺/NMDG⁺ substitution data (Fig. 10, A, B, E, and F).

TCa,3 appears to be slightly more Na⁺ permeable than human Ca,3.1, in part because of a slightly reduced Ca²⁺-block and pore Ca²⁺-binding affinity (Fig. 11, A and B). However, other aspects of the pore might influence the degree of Na⁺ permeation. Our bi-ionic reversal potential experiments, which approximate the preference of a given channel pore for inward-flowing Ca²⁺ ions versus outward-flowing monovalents (i.e., Li⁺, Na⁺, K⁺, and Cs⁺), revealed that TCa,3 was considerably less selective for Ca²⁺ than human Ca,3.1 (e.g., P_Ca/P_Na = 35.61 ± 1.52 vs. 89.56 ± 8.21, respectively), falling between the more Na⁺ permeable channels LCa,3-12a (33.06 ± 1.50) and LCa,3-12b (41.49 ± 1.98). Indeed, if preference for Ca²⁺ over monovalents measured under bi-ionic conditions was the major determinant for Na⁺ permeation, then we would expect TCa,3 to conduct a much higher proportion of inward Na⁺ upon depolarization, most similar to the LCa,3-12a variant (Fig. 10 B). Instead, the selectivity for Ca²⁺ over monovalents in the TCa,3 channel pore seems somewhat inconsequential, where 29.6% of the total current is carried by Na⁺, which is more similar to Ca,3.1 (21.0%) than either LCa,3-12b (60.5%) or LCa,3-12a (93.5%). As such, Ca²⁺ block appears to be more consequential for determining Na⁺ permeation than is Ca²⁺ over Na⁺ selectivity. Instead, Ca²⁺ selectivity appears to play a more marginal role, possibly accounting for the 8.6% increase in Na⁺ permeability for TCa,3 relative to Ca,3.1.

Finally, we also find an interesting inverse correlation between conductance values across bi-ionic reversal potential (GRev) and outward monovalent current flow (GOut) versus the potency of the Ca²⁺-block effect: whereas LCa,3-12a has the largest GRev and GOut values and the weakest Ca²⁺ block, Ca,3.1 has the smallest GRev and GOut values and the strongest Ca²⁺ block (compare Fig. 11 B with the top two panels of Fig. 12 E). This is not surprising because GRev and GOut should reflect the pore’s permeability to outward-flowing monovalents, against external Ca²⁺ which seeks to bind the extracellular high-affinity site. However, there is a slight inconsistency in this correlation, where GRev and GOut conductance values for TCa,3 are significantly larger than Ca,3.1, despite both channels bearing similarly potent Ca²⁺ block properties. Instead, the conductance values for TCa,3 lie between those of Ca,3.1 and the two exon 12 splice variants of LCa,3. Thus, conductance across the reversal potential and during outward current flow though T-type channels might depend on a combination of both affinity for Ca²⁺ at the external pore surface (where TCa,3 and Ca,3.1 are similar), and pore Ca²⁺ versus Na⁺ permeability (where TCa,3 and LCa,3 are more similar).

In conclusion, we find evidence that for T-type channels, Ca²⁺ block—and not Ca²⁺ versus Na⁺ selectivity—best correlates with the degree of inward Na⁺ permeation under simulated physiological conditions. For Trichoplax, which lives in seawater, the abundance of external Ca²⁺ must ensure efficient saturation of the Ca²⁺ block effect, rendering the channels mostly permeable to Ca²⁺. Here, our studies were performed using salines that are compatible with HEK-293T cells, with reduced ionic concentrations and osmolarity across both sides of the membrane compared with seawater. In future studies, it will be interesting to evaluate the consequences of altered ion concentrations on TCa,3 biophysical, permeation, and pharmacological properties (and indeed other ion channel types), where evolutionary transitions from seawater to land/freshwater environments, and perhaps back again, would likely require some level of adaptation in channel function, such that contributions to cellular excitability and Ca²⁺ influx remain within acceptable parameters.

ACKNOWLEDGMENTS

We thank Drs. David Spafford and Paul S. Katz for providing support to A. Senatore during the preliminary stages of this research, Dr. Arnaud Monteil for preliminary Western blotting of the TCa,3 channel protein, Farid R. Ahmadli for help analyzing Ca v3 channel gene sequences, and Dr. Andreas Heyland for providing the Trichoplax specimens used for sequencing and cloning of the TCa,3 channel cDNA.

This work was funded by a National Science and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2016-06023), a Canadian Foundation for Innovation Grant (CFI Project 35297), University of Toronto Mississauga start-up funds, and an NSERC postdoctoral fellowship (PDF-43841-2013) to A. Senatore.

The authors declare no competing financial interests.

Richard W. Aldrich served as editor.

Submitted: 28 August 2016
Accepted: 7 February 2017

REFERENCES


Senatore, A. 2012. Alternative splicing of Lymnaea Ca3.2 and NALCN ion channel genes serves to alter biophysical properties, membrane expression, and ion selectivity. UWSpace. Available at https://uwspace.uwaterloo.ca/handle/10012/6926

Senatore, A., and J.D. Spafford. 2010. Transient and big are key features of an invertebrate T-type channel (LCa3.3) from the central nervous system of Lymnaea stagnalis. J. Biol. Chem. 285:7474–7478. http://dx.doi.org/10.1074/jbc.M110.099753


