FIGfams: yet another set of protein families

Folker Meyer, Ross Overbeek and Alex Rodriguez

Received June 8, 2009; Revised August 5, 2009; Accepted August 6, 2009

ABSTRACT

We present FIGfams, a new collection of over 100,000 protein families that are the product of manual curation and close strain comparison. Using the Subsystem approach the manual curation is carried out, ensuring a previously unattained degree of throughput and consistency. FIGfams are based on over 950,000 manually annotated proteins and across many hundred Bacteria and Archaea. Associated with each FIGfam is a two-tiered, rapid, accurate decision procedure to determine family membership for new proteins. FIGfams are freely available under an open source license. These can be downloaded at ftp://ftp.theseed.org/FIGfams/. The web site for FIGfams is http://www.theseed.org/wiki/FIGfams/

INTRODUCTION

Progress in DNA sequencing technology has led to an abundance of nucleotide sequences in community databases. As the pace of sequencing increases so does the importance of creating tools to accurately describe the protein functions encoded in the DNA sequences. These descriptions, or annotations, are created by using a variety of bioinformatics tools and databases. One of our most valuable clues to decipher functions of unknown proteins is their comparison with existing proteins.

The same issue explains why few authors of genome data sets are able to spend time curating the genome data sets they deposited in Genbank. For the majority of genomes, new discoveries are not used to update after the time of initial submission. As a result, even as our knowledge of protein function is developing, the existing genome data sets are often out of date. This situation presents a serious dilemma for the analysis of new sequences because comparison with existing data is the source for annotations of new data, the results of which are then submitted to a number of repositories.

Most of the tools for analyzing new sequence data use BLAST or more sophisticated bioinformatics tools such as HMMs, PSSMs, or integrations of multiple tools. Both with BLAST-type searches and with more complex representations, the construction and use of protein families are central to most accurate annotation efforts; see ref. (3) for a discussion.

The common requirement for these approaches is that curation of initial protein sets [in the case of TIGRFAMS] or assignment of protein family functions [in the case of PIRfams or OrthoMCL] needs to be performed by an expert in the protein being analyzed. As with manual curation of complete genomes, however, manpower for the creation of these core data sets has been the limiting factor so far. Curation of data has restricted the number of protein families; for example, in the manually curated TIGRFAM core set, only 1972 TIGR equivalogs exist in Release 8.0 of the TIGRFAMs.

This bottleneck for manually curating the protein families can be overcome by using the Subsystem approach for the construction and maintenance of protein families. Subsystem-based curation provides a scalable alternative to the traditional manual curation efforts for protein families.

Subsystems and FIGfams

Basically, a Subsystem is a collection of abstract functional roles and a spreadsheet mapping those functional roles to genes across multiple genomes. The spreadsheet has...
functional roles as columns, and each row corresponds to a single genome. Each cell contains the genes in the corresponding genome that implement the functional row given by the column. Together, the Subsystem and the Subsystem spreadsheet are referred to as a populated Subsystem. The current collection of manually curated Subsystems includes over 800 subsystems containing over 6400 functional roles, to which >950,000 genes are connected; see ref. (5) for details.

The FIGfam effort may be thought of as constructing the infrastructure needed to automatically project the manual annotations maintained within the Subsystem collection.

Defining FIGfams

FIGfams are sets of isofunctional homologues (23). In other words each FIGfam is supposed to contain a set of proteins that are end-to-end homologous and share a common function. The current release (10.0) contains roughly 107,000 families, from careful manual curation using Subsystems (22) and automatic annotation of closely related strains. The families from closely related strains are based on sequence similarity and conserved genomic context. Figure 1 gives an overview of FIGfam creation and the use of FIGfams for automatic annotation.

More formally, each FIGfam can be defined as a four-tuple: (ID, protein-set, decision-procedure, family-function), where

1. The ID is a stable, unique identifier that describes the family and allows linking to a web site describing the protein family;
2. The protein-set is a set of protein sequences that are similar over essentially their entire length (i.e. they share a common domain structure; we allow for slight differences in the C-terminal because the correct determination of start codons is still somewhat imperfect and would artificially split protein sets otherwise belonging to the same family) and are believed to implement a common function;
3. The decision-procedure is a decision procedure that, given a new protein sequence as input, decides whether the new sequence should be considered as ‘part of the same family’; and
4. The family-function is the function believed to be implemented by all members of the protein-set.

Creation and maintenance of FIGfams

The construction of FIGfams is based on forming protein-sets in cases in which it can more or less reliably be asserted that sequences implement identical functions. Currently, there are two scenarios for creating a FIGfam: one based on subsystems and the other based on closely related strains.

The FIGfams are constructed by inferring which pairs of genes must be placed in the same FIGfam (see below for detailed discussion in each of the scenarios) and then forming the set of FIGfams as the maximum set of protein-sets consistent with the pairwise constraints.

Families constructed from subsystems. Two proteins will be placed in the same FIGfam if they are similar over their entire length and they occur within the same column of a Subsystem (Figure 2). Genes within the same column of a Subsystem implement a common function.

Two genes within the same column of a Subsystem will be placed in distinct FIGfams when one is multifunctional and the other is not.

A low degree of sequence similarity (e-value of 10^{-10}) will lead to the creation of multiple FIGfams with the same function.

These rules firmly ground the FIGfams in the manual curation effort maintaining the Subsystems. If at any point it appears that two proteins are part of a single protein-set but are believed to implement distinct functions, the solution is to make sure that Subsystems exist to which the proteins are attached. That is, if there is a solid reason to believe that the proteins implement different functions, the way to force this to occur within FIGfams is to make sure that the manual effort reflects the reasoning that the functions are distinct.

Families constructed from closely related strains. If two or more sequenced genomes are from closely related strains, it is usually possible to trivially establish a reliable correspondence between 90 and 95% of the genes within the genomes. This is illustrated by the display of corresponding regions from the genomes shown in Figure 3. Of course, one needs an automated tool that uses specific rules to detect reliable correspondences, and many have been constructed.

We use a simple tool to implement this process; a description is provided in the Appendix. We note that as more genomes are sequenced from closely related strains, the number of correspondences will rapidly grow.

Curating FIGfams over time—connecting changes in Subsystems to changes in FIGfams

The current set of FIGfams will rapidly become outdated as the characterization of specific proteins continues to improve. New experimental results reported in the literature and careful manual annotation of the current Subsystems naturally force changes and additions to the FIGfam collection. A central feature of the existing collection is that families will automatically be split, merged, and added in response to the addition of new Subsystems or corrections of errors in the existing collection. In a field experiencing such rapid advance, this automated coupling of changes in Subsystems to derived changes in FIGfams is vital.

Once each month, the existing FIGfams are scanned looking for cases in which a family contains two proteins such that both proteins occur in Subsystems and the functions of the proteins are not identical. Such a situation forces a split of the FIGfam, which can be achieved automatically. Similarly, if two families are found to each contain proteins that occur in Subsystems
Figure 1. Overview of FIGfam creation and use. From two different input sets, FIGfam protein sets are defined. Subsequently, parameters for decision procedures and representative proteins are computed. On the decision procedure side, a new sequence is classified via BLAST searching the representative database (first tier); then the decision procedure associated with each candidate FIGfam is executed (second tier); and finally the first match for any candidate FIGfam is reported back.
and if these proteins are globally similar and implement identical functions, then the families are automatically merged. As new Subsystems are implemented, we find cases in which globally similar proteins that all connect to Subsystems and implement the same function are not yet members of any FIGfam. If they can be added to existing FIGfams, they are; if not, new FIGfams are automatically created.
COMPARISON OF FIGfams, TIGRFAMs AND PIRSFs

Many groups have attempted the curation of protein families over time; here we discuss the differences and similarities among FIGfams and two other prominent efforts. All three efforts curate families of homeomorphic proteins, requiring full-length sequence similarity and common domain structure within each family. These requirements make them different from efforts such as the PFAM database (14) that provide protein domains.

The technologies used for curation are very different, resulting in vastly different throughput of the various protein family curation strategies. In the case of FIGfams roughly 23 000 protein families are the results of manual curation; that number is in stark contrast to 1 900 TIGRFAM equivalogs with manually curated kernel (or ‘SEED’) alignments. Our understanding is that curation of TIGRFAMs starts with manual creation of a SEED alignment and that an HMM is then created from that alignment. The subsequent curation effort is the definition of thresholds that allow the HMM-based decision procedure to reliably detect new members of the protein family. It should be noted that the TIGRFAMs distribution contains a large number of non-equivalog based HMMs that are not a result of manual curation of on a protein family level, they represent broader classes of proteins.

The PIRSF concept involves the formation of a shallow hierarchy (superfamilies, containing families, containing subfamilies). The goal is somewhat different from, and perhaps more ambitious than, that present in FIGfams. The PIRSF hierarchy attempts to group things into a hierarchy based on physical properties, realizing that significant shifts in physical properties usually correlate closely with functional properties. The FIGfams are based on the Subsystems view (22) in which a bacterial organism is composed of a set of functional Subsystems, and each active variant of a Subsystem is thought of as a set of functional roles. Proteins implement one or more functional roles. Grouping sets of functional roles induces the shallow hierarchy imposed by Subsystems.

Both notions involve protein families made up of proteins that are globally (i.e. full-length) similar. In most cases, the lowest-level PIRSF family (either a family or a subfamily) is composed of proteins that are believed to implement a common function. Hence, we believe there exists a close correspondence between the families produced by the two efforts, and the correspondence will improve as uncertainties are gradually eliminated. At this point the differences in perspective become most apparent in the way families are constructed. In the FIGfam effort, the major concern is to avoid placing two proteins with different functions into the same set. This leads to many small protein families (and many distinct families that contain closely similar sequences). In a somewhat oversimplified view, the PIRSF families are large groupings of homologous proteins in which the precise, distinct functions of subfamilies are gradually worked out, whereas the FIGfams start with no groups and conservatively gather proteins of identical function. To provide perspective on what this means, we note that the FIGfams collection now includes over 100 000 families, over half of which contain three or fewer members, whereas the PIRSF contains 32 000 families.

All three groups maintain sets of proteins and suggest a function for all members of that family. For TIGRfams, the set of proteins is used for the kernel (or ‘SEED’) alignment subsequent used to create an HMM. For FIGfams and PIRSF, complete sets of proteins are maintained for each family. Table 1 lists further differences and similarities.

In the case of the HMM based protein families it should be noted that HMM based methods have been shown to have excellent results in the detection of remote homologies, however this comparison does not evaluate

<table>
<thead>
<tr>
<th>Family creation</th>
<th>FIGfams</th>
<th>PIRSFs</th>
<th>TIGRFAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Via Subsystem curation and close strains</td>
<td>Via automatically generated proteins incorporating protein domain knowledge</td>
<td>Via manually curated kernel (or ‘SEED’) alignment</td>
</tr>
<tr>
<td>Extending an existing family</td>
<td>Include new genomes in Subsystem</td>
<td>Automatic placement in homomorphic family</td>
<td>Adjust threshold for trusted HMM score</td>
</tr>
<tr>
<td>Creating new families</td>
<td>Via new Subsystem creation</td>
<td>Via automated process (see above)</td>
<td>New SEED and HMM</td>
</tr>
<tr>
<td>Curation of function (for all proteins in set)</td>
<td>Via Subsystem inclusion</td>
<td>Define family function for set</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Scope</td>
<td>Bacteria and Archaea</td>
<td>Universal</td>
<td>Bacteria and Archaea</td>
</tr>
<tr>
<td>Number of families</td>
<td>107 233</td>
<td>33 599</td>
<td>3603</td>
</tr>
<tr>
<td>Families with proteins with manually curated function</td>
<td>20 699</td>
<td>3279</td>
<td>1920</td>
</tr>
<tr>
<td>Number of proteins in manually curated families</td>
<td>970 682</td>
<td>6040</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

a Homeomorphic = full-length homologous with common domain architecture.

b From http://pir.georgetown.edu/pirwww/about/doc/tutorials/pirsftutorial.ppt.

c TIGRFAM protein sets are not curated; only SEED sets and HMM thresholds are curated.

this ability. We also did not evaluate the option of careful manual curation of threshold values for HMMs that to avoid false positives.

FIGfam DECISION PROCEDURES

The third component of each FIGfam, the decision-procedure, is used to answer the question ‘For a new sequence X, should X be considered part of the FIGfam?’

Various technologies exist to implement this decision procedure, ranging from a simple ‘take the best BLAST hit’ approach to more sophisticated approaches using machine-learning technology such as hidden Markov models and position-specific scoring matrices.

The current implementation of the FIGfam decision is two-tiered. A global fast screening procedure will create a set of candidate FIGfams for a target sequence X. A slower, more accurate decision procedure is associated with the individual family.

In order to provide maximum throughput, the initial screening is implemented by using a database of representative sequences for all FIGfams. Each FIGfam is associated with a set of representative sequences. We rely on comparing all sequences within a FIGfam to each other via BLAST (cut-off $1 e^{-10}$) to form the set. A single randomly chosen sequence will be used in this database to represent all sequences that are within a $1 e^{-10}$ distance.

Each candidate FIGfam has its own decision procedure: we currently implement two distinct procedures. Manual curation is used to assign decision procedures, currently most families use the BLAST voting procedure.

Similarity bounds decision procedure—a bounds list is generated for each member of the protein family by using the learning data. The bounds list is essentially a threshold for trusted BLAST scores, in which the user can safely assign a functional role if the BLAST score falls below a designated threshold. The decision procedure goes through the closest BLAST hits in the family (from the sequence being considered for membership), and the individual members are examined to see whether the hits fall within the ‘safe’ threshold. If there are ever more ‘safe’ hits than those that are not, the process ends successfully. Otherwise, the sequence cannot reliably be assigned to the set.

BLAST voting decision procedure—the top 10 and 20 BLAST results are voted on to select the functional role with the most hits. When two or more functional roles have an equal number of votes as the top choice, no assignment is given. Figure 4 provides details on the BLAST voting algorithm.

We have evaluated a series of decisions procedures when designing and implementing FIGfams. In the remainder of this section, we revisit some of the issues that led to the existing implementation. The first test targets pure runtime performance, the second tests for robust classification performance in the face of noisy data, and the third compares performance with two related protein family efforts.

Test 1: a simple case—finding ribosomal protein L33p

FIGfam FIG000053 has a family function of LSU ribosomal protein L33p. The decision procedure for this family is straightforward. The central issue in choosing a decision procedure is just performance.

Specifically, we evaluated the use of an HMM as opposed to the use of BLAST using the set of sequences (1313 sequences) from the FIGfam FIG000053. The BLAST test was performed by first BLASTing the sequences against a set of representative sequences of the FIGfams. Subsequently, the resulting FIGfams in a threshold were further evaluated by BLASTing against...
remain stable. Linux (3 GHz Intel CPU, 4 GB RAM); with faster CPUs the ratios will
computations were performed on a current desktop machine running
HisAb comparison in that the sequences are closely homologous,
and we believe that we have accurately annotated (manually) the entire set of sequences. The FIGfam
FIG000087 implements Histidyl-tRNA synthetase (EC 6.1.1.21), and FIG000865 implements ATP phosphoribo-
syltransferase regulatory subunit (EC 2.4.2.17).

One obvious way to evaluate each decision procedure would be to take each sequence from the HisAb set, delete
the sequence from the family containing it, and then examine the results of asking, for each of the two
families, ‘Does the sequence belong in this family?’ For
each of these single-sequence experiments there are four possible outcomes: the decision procedure can place
the sequence into FIG000087, FIG000865, both, or neither. If
we perform this experiment for each sequence in each of
the two families for each of the decision procedures we
wish to evaluate, we gain some insight into the relative
merits of the set of decision procedures (we display the
results of this experiment below). However, we can also
investigate the situation in which some percentage of the
sequences in HisAb has been assigned to the wrong protein
family. This more closely resembles the real situation for
most paralogous families, and we believe that it offers a
more comprehensive way to evaluate the relative merits of
the decision procedures.

Overall, the decision procedures that performed the best
in the presence of misannotated sequences were the
BLAST voting algorithms (top 1, top 20 BLAST
results). The number of BLAST hits to vote on was
directly proportional to the size of the protein family
being tested. The HMM decision procedure was
outperformed by all other decision procedures, and it
was also more time consuming.

Test methodology. Each decision procedure was tested by
using a jack-knife approach, where a sequence was used
for testing the decision procedure, while the rest of
the sequences were used as the learning data to create
the model. This process was iterated several times over
the number of total sequences in the learning data. In
addition to experimenting with each decision procedure
using the gold standard, errors were introduced to the
gold standard assignments by switching a sequence’s
assigned functional role in the learning data. The goal is
to view how each decision procedure behaves in the
presence of errors in the annotations using a controlled
environment. Each decision procedure was tested with 0,
10, 20, 30 and 40% annotation errors in the learning data.
The accuracy, sensitivity and specificity measurements
were calculated in order to compare the results of the dif-
ferent decision procedures for each of the protein families
tested. The sensitivity measures how well a binary classi-
fication test correctly identifies a condition. The specificity
measures how well a binary classification test correctly identifies the negative cases, or those cases that do not
meet the condition under study. The specificity, sensitivity,
and accuracy measures were calculated by counting the
number of true positives (tp), true negatives, (tn), false
positives (fp) and false negatives (fn).

Test results. For FIG000087, the sensitivity of all three
procedures is identical without errors present. As errors

![Diagram](https://example.com/diagram.png)
are introduced into the data set, the BLAST voting procedure clearly outperforms the other procedure with almost no loss of sensitivity at 20% errors and a 0.96 sensitivity rate at 30% errors (Figure 6).

The specificity, or rate of false positive predictions, is another important performance measure for a classification tool. Again the BLAST voting procedure clearly outperforms the simple BLAST and the HMM (Figure 7).

In some cases the decision procedure associated with a FIGfam is not the BLAST voting procedure. Instead we use the similarity bounds procedure described earlier. Figure 8 shows the performance characteristics of this procedure. Similarity bounds provide very good specificity (>0.914 for 50% errors in the data), but the sensitivity degrades badly with increasing error rates. The complete results are available in the appendix.

Discussion of test 2. The BLAST voting procedure clearly outperforms HMMs in the chosen example. Since we do not include this procedure with all FIGfams, however, we also show data for the similarity bounds procedure. This is a very conservative procedure with very poor sensitivity. The decision to use the similarity bounds procedure when faced with the potential of introducing false positives is one taken by the human curator of the FIGfams to minimize the noise introduced into the predictions.

Test 3: using HisAb as a gold standard for comparing FIGfam, TIGRFAM and PIR HMM assignments

The decision procedures from different groups such as PIRSF [1] and TIGRFAM [4] were tested to evaluate the
The accuracy of the three protein families and the associated algorithms. We believe that in the case of HisAb we can use the annotations provided in ref. (25) as a gold standard.

Table 2 provides the number of protein families intersecting the contents of the HisAb set associated with each database. TIGRFAM release 7.0 provides the public with a set of protein families covering a range of functional roles. TIGRFAM’s preferred decision procedure is a set of HMMs that provide a trusted and noise-cutoff score indicating the ranges for which the results can either be trusted or not as the specified functional role. The HMMER package was used to make an assignment. PIRSF (July 2007 release) also provides a set of HMMs along with a decision procedure for its protein families. The PIR decision procedure uses the available HMMs together with BLAST results to assign a sequence to a PIRSF group.

The FIGFAMs, TIGRFAMs and PIRSF protein families provide a number of related families that intersect with the contents of HisAb. The same HisAb sequences used in the previous section were used to compare the accuracy, sensitivity and specificity against the decision procedures of the three protein family groups. The main interest is to test whether the manually curated HisAb sequences were correctly characterized as any of the respective HisAb families in FIGfam, TIGRFAM, and PIRSF. A similar procedure was used to count the tp, fp, tn and fn as before. The same equations as in the above section were used to calculate the accuracy, sensitivity and specificity of the HisAb families. The specificity comparisons between the HisAb protein families from FIGfams, TIGRFAMS and PIRSF show that none tries to overpredict the sequence’s functional role (keep false positives to a minimum). However, using the FIGFAM decision procedures resulted in more functional roles assigned correctly (sensitivity). A summary of the comparisons is shown in Figure 9.

Test 4: comparing runtime and coverage of FIGfams, TIGRFAMS and PIRSF

The use case for the protein families is in annotating novel sequences; here we study the percentage of proteins in five complete microbial genome sequences (Table 3) that were automatically assigned a function and the time require to compute the annotations.

For FIGfams, we used the built-in method, in this case the BLAST voting procedure; for TIGRfams, we used the HMMs provided with the cut-off values; and for PIRSF, we used the decision procedure provided by PIR.

The most interesting aspect of the comparison for this test is the vast difference in the number of proteins assigned by the different technologies to protein families as indicated in Figure 10. The difference in coverage is at

<table>
<thead>
<tr>
<th>Protein family group</th>
<th>Name Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGfam</td>
<td>FIG000087 histidyl-tRNA synthetase (EC 6.1.1.21)</td>
</tr>
<tr>
<td>FIG0000865</td>
<td>ATP phosphoribosyltransferase regulatory subunit (EC 2.4.2.17)</td>
</tr>
<tr>
<td>TIGRFAM</td>
<td>hisS histidyl-tRNA synthetase</td>
</tr>
<tr>
<td></td>
<td>hisS_second ATP phosphoribosyltransferase, regulatory subunit</td>
</tr>
<tr>
<td>PIRSF</td>
<td>PIRSF001549 histidyl-tRNA synthetase (validated)</td>
</tr>
<tr>
<td></td>
<td>PIRSF006650 ATP phosphoribosyltransferase</td>
</tr>
<tr>
<td></td>
<td>PIRSF000486 ATP phosphoribosyltransferase</td>
</tr>
</tbody>
</table>

Table 3. List of genomes analyzed

<table>
<thead>
<tr>
<th>Genome</th>
<th>Number of proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis subsp. subtilis str. 168</td>
<td>4105</td>
</tr>
<tr>
<td>Escherichia coli K12</td>
<td>4133</td>
</tr>
<tr>
<td>Staphylococcus aureus subsp. aureus COL</td>
<td>2618</td>
</tr>
<tr>
<td>Synechocystis sp. PCC 6803</td>
<td>3572</td>
</tr>
<tr>
<td>Vibrio cholerae O1 biovar eltor str. N16961</td>
<td>3835</td>
</tr>
</tbody>
</table>
least 10-fold and in some cases 20-fold, resulting from the larger number of FIGfams. Also taking into account the runtimes for the three decision procedures (Figure 11), we see that the FIGfam decision procedures are 10- to 30-fold faster than the existing procedures.

Because of the lack of a gold standard, the comparisons here are not for the actual correctness of the annotations; instead we are comparing the fractions of proteins annotated with the protein families and the runtime required. We provide a complete list of all assignments made in the appendix.

SUMMARY AND DISCUSSION

The propagation of errors from the sequence databases has been a significant problem in genome annotation and other areas. Several techniques have been used to handle the results of the noise in the databases. We present a novel solution to the problem by providing a set of protein families that can be used for automatic annotation based on a set of consistent, manually derived, high-quality annotations. The fact that Subsystems cover 50% of the known bacterial and archaeal protein space makes FIGfams a very useful resource. By allowing for variable decision procedures on a per family basis, we have ensured rapid processing at a rate that enables the annotation of several genomes per day on a current desktop machine.

The primary benefits of our approach are as follows:

- FIGfams are fast, reliable, and robust to noise in the data. Moreover, as more diverse genomes are sequenced and annotated, the speed and accuracy of FIGfam-based annotation will increase.
- The time to classify a single protein averages around 10 s on a modest desktop machine, allowing processing of ~8640 proteins per day on a single machine.
- In the examples shown in this manuscript and our other tests, the BLAST voting procedure, the most frequently used decision procedure for FIGfams, performs at least as well as simple BLAST and HMM-based procedures for the propagating the annotations of conserved proteins (test 1), or distinguishing between two closely related proteins (test 2). If errors are present in the data set, it outperforms the other procedures in the examples we tested (test 3).
- FIGfam performance is optimized to minimize false positive assignments.
- As Subsystems cover more and more of the known protein space, the FIGfams will increase in value over time.
- New results from the literature are incorporated into the FIGfams via Subsystem curation, guaranteeing that the FIGfams remain up to date.

As the number of proteins in FIGfam increases, automatic annotation pipelines such as RAST (26) will be able to process a larger number of genomes efficiently.
to reduce the number of genes subjected to costly in-depth database searches. Thus, by linking accurate, mass creation of protein annotations and protein family construction using Subsystems we have achieved a novel approach offering both high productivity and high accuracy in protein family creation.

AVAILABILITY

The FIGfams have been used as a central component in the RAST server (27) (http://RAST.nmpdr.org), a system that provides rapid, accurate annotation of prokaryotic genomes. They are also used in MG-RAST (28), a public server focusing on the annotation of metagenomic data (http://metagenomics.nmpdr.org).

Release 10 of FIGfams is made freely available to anyone for any use. It contains 1,414,035 proteins grouped into 106,775 families. All families can be downloaded from ftp.theseed.org/FIGfams/.

Running the FIGfam decision procedure locally requires a Linux/Unix/OS-X operating system and Perl 5.6 or greater.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors wish to thank Gail Pieper for helping with editing the manuscript. We thank Veronika Vonstein and her team of expert Subsystem annotators.

FUNDING

Part of this project has been funded with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN266200400042C. Argonne National Laboratory’s work was supported under US Department of Energy contract DE-AC02-06CH11357. Funding for open access charge: US Department of Energy contract DE-AC02-06CH11357.

Conflict of interest statement. None declared.

REFERENCES

