Allogeneic blood or marrow hematopoietic cell transplantation continues to be the most potent anti-leukemic treatment for adult patients with standard, high-risk, or chemo-refractory acute myeloid leukemia. Until recently, this procedure was generally limited to those recipients who had an available matched-sibling donor or matched-unrelated donor. Technical advances in graft cell processing and manipulation, control of bidirectional T cell alloreactivity, graft-versus-host disease prophylaxis, and other supportive measures in haploidentical transplantation now enable nearly all patients with acute myeloid leukemia to benefit from the graft-versus-leukemia effect with substantial reduction in procedure-related mortality. Over recent years, haploidentical donors have been increasingly adopted as a valid donor source in allogeneic hematopoietic cell transplantation for acute myeloid leukemia in the absence of an HLA-matched donor. Among centers of the European Society for Blood and Marrow Transplantation, the use of haploidentical related donor transplantation has increased by 250% since 2010, and 291% since 2005. On behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation, we summarize recent utilization trends in haploidentical transplantation for acute myeloid leukemia and describe the transformative changes in haploidentical hematopoietic cell transplantation techniques over the past decade, which have led to the current widespread use of this procedure. Furthermore, we review the efficacy of haploidentical related donor transplantation has increased by 250% since 2010, and 291% since 2005. On behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation, we summarize recent utilization trends in haploidentical transplantation for acute myeloid leukemia and describe the transformative changes in haploidentical hematopoietic cell transplantation techniques over the past decade, which have led to the current widespread use of this procedure. Furthermore, we review the efficacy of haploidentical hematopoietic cell transplantation for acute myeloid leukemia from available studies, including preliminary comparative studies, and bring attention to remaining unanswered questions and directions for future research. We conclude this report with our recommendations for the role of haploidentical hematopoietic cell transplantation in acute myeloid leukemia.
Introduction

Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative therapy for acute myeloid leukemia (AML), with 3- to 5-year overall survival (OS) rates ranging from 23% to 88% depending on the AML risk profile, stage, and the presence or absence of minimal residual disease (MRD). AML continues to be the primary indication for allogeneic HCT, and the number of these procedures performed for AML among the European Society for Blood and Marrow Transplantation (EBMT) centers has steadily increased over the past decade, with the most recent report showing a record number of 6,189 allogeneic HCT performed in 2015 compared to 3,946 in 2010. In addition to the development of reduced-intensity (RI) conditioning regimens, thereby extending the use of allogeneic HCT for AML patients above the age of 60 or those with co-morbidities, the significant growth of allogeneic HCT for AML is a result of the increased availability of alternative donors, particularly haploidentical family donors.

While a HLA-matched sibling donor (MSD) remains the preferred donor choice for optimal transplant outcomes, in reality, approximately only 30% of patients from Western countries have such a donor, therefore 70% of patients require an unrelated donor source. Interestingly, a recent analysis using population data from the USA has challenged this well-accepted sibling match probability and describes a variation in rates ranging between 13% to 51%. Perhaps more alarming is the finding of the effect of a 40-year decline in USA birth rates on decreased availability of a MSD for transplant-eligible patients. As such, the current generation of young adults (18 to 44 years) will be 1.5 times less likely to find a MSD during the peak need for HCT (at around 61 years of age) compared to their current adult counterparts (aged 45 to 64 years). It is expected that a similar evolution in MSD accessibility is occurring in Western Europe as total fertility rates remain low. These changes highlight the upcoming demand for and utilization of alternative donor sources.

Alternative donor options include HLA-matched unrelated donors (MUD), partially HLA-mismatched unrelated donors (MMUD), single or double umbilical cord blood units (sUCB or dUCB), and haploidentical (haplo) family donors. While MUD have traditionally been considered to be the next preferred donor following a MSD, the success of finding an 8/8 HLA MUD depends on race. While Caucasians have approximately 75% likelihood of finding an 8/8 MUD, the probability falls to less than 20% for patients of African descent or other ethnic minorities. Furthermore, differences in laws for donor selection and recruitment among different countries limit or delay the acquisition of a MUD. The use of an unrelated donor or UCB product with a mismatch at one or two HLA loci expands the accessibility of HCT to the vast majority of patients, however, this is at the cost of an increased risk of poor transplant outcomes and/or increased expense, particularly with the use of UCB cells.

Over recent years, haploidentical donors have been increasingly adopted as a valid source of donor cells for allogeneic HCT of AML in the absence of an HLA-matched donor. A haploidentical related donor is defined by the sharing of one haplotype (or a single identical copy of chromosome 6) with the patient containing the HLA region involving class I and class II histocompatibility genes. However, a haploidentical family donor may be greater than half-matched and have common alleles on the unshared haplotype (mismatched related donor). The most recent EBMT activity survey report described haploidentical donors as a family member with two or more loci mismatch within the loci HLA-A, -B, -C, -DRB1 and DQB1. Among centers of the EBMT, the use of haploidentical transplantation (haploHCT) for malignant and non-malignant disorders has surged by 250% since the year 2010, and by 291% since 2005. In 2010, 802 haploHCT were performed, and this number increased to 1,571 in 2013, followed by 2,012 haploHCT in 2015. The highest utilization for haploHCT in 2015 was seen in myeloid malignancies (n=1,008), and the majority of these patients had a diagnosis of AML (n=735), with an equal proportion of patients in first complete remission (CR1) or more advanced disease (Figure 1). In contrast, the utilization of unrelated umbilical cord blood transplantation (UCBT) has sharply declined for myeloid and lymphoid malignancies. This apparent preference for haploidentical donors is a result of improvements in conditioning regimens combined with new strategies to diminish the risk of graft-versus-host disease (GvHD) associated with one haplotype mismatched donors that have resulted in favorable clinical outcomes comparable to HLA-matched allogeneic HCT, compounded with the nearly universal and immediate availability of the donor and ease of recurrent stem cell collections for repeat cellular infusions. The ability to have rapid access to a haploidentical donor is a crucial benefit for patients with high-risk AML, as a delay in transplantation due to donor issues can result in poor outcomes.

On behalf of the Acute Leukemia Working Party (ALWP) of the EBMT, herein we aim to first describe the early strategies used in haploidentical transplantation and the pivotal developments that have made its use universal and available to nearly all patients requiring hematopoietic cell transplantation. We then summarize the evidence from available studies, evaluating its efficacy in AML, including preliminary non-comparative and comparative studies of haploHCT with other alternative donor transplants, and lastly, discuss future directions for research.

Early experiences in haploidentical transplantation

Initial experiences with unmodified bone marrow (BM) haploidentical HCT in acute leukemias generated poor outcomes as a consequence of intense bidirectional T cell alloreactivity associated with HLA-mismatches. Limited success was primarily related to delayed engraftment, graft failure, and acute graft-versus-host disease (aGvHD). In order to overcome these challenges, several alternative strategies were developed. In 1993, investigators from the University of Perugia pioneered a strategy of T cell-depletion (TCD) with ex vivo CD34+ cell selection and in vivo antithymocyte globulins (ATG) administration as sole prophylaxis for GvHD, accompanied by infusion of a large number of CD34+ cells following intensive myeloablative and immunosuppressive conditioning, with the rationale that this strategy would help promote engraftment and decrease graft failure (Figure 2A). “Mega-doses” of stem cells were obtained by combining TCD BM with granulocyte colony-stimulating factor (G-CSF) mobilized peripher-
al blood stem cells (PBSC). With additional modifications, 95% of patients with acute leukemia (AL) achieved primary engraftment, and aGvHD and chronic GvHD (cGvHD) were minimal. With more than 15 years of follow-up, the relapse incidence (RI) was 17% in patients with AML who were transplanted in any complete remission (CR), while the 17-year disease-free survival (DFS) rate was 43%. In addition to a highly myeloablative regimen, the emergence of natural killer (NK) cell alloreactions following transplantation may explain the decreased incidence of relapse and improved survival. Despite the success of the anti-leukemic effects of this strategy, TCD haploHCT was associated with high transplant-related mortality (TRM) of up to 40% mainly due to a delay in immune recovery and life-threatening infections. Findings from an EBMT retrospective analysis of 173 adults with de novo AL who received a TCD haploidentical HCT in Europe showed similar outcomes, including high engraftment rate, negligible GvHD, and high TRM. To circumvent the pitfalls associated with TCD haploHCT, other forms of T-cell cellular therapy were exploited, including selective T-cell depletion, adoptive transfer of donor T cells following transplant, selective T-cell add-backs and gene-modified donor T cells.

Post-transplant cyclophosphamide: a pivotal point in haploidentical transplantation

The rationale behind the use of post-transplantation cyclophosphamide (PTCy) stems from early preclinical studies demonstrating its role in targeting alloreactive T cells and reducing GvHD when given within a narrow window following allografting. Furthermore, the finding of preserved hematopoietic stem and progenitor cells (and in later work, regulatory T cells) when exposed to cyclophosphamide owing to the high expression of aldehyde dehydrogenase gave rise to the first-in-human clinical trial at Johns Hopkins Hospital in 1999. Thirteen patients with high-risk hematologic malignancies underwent T cell-replete (TCR) haploidentical bone marrow transplantation (haploBMT) using a non-myeloablative (NMA) conditioning regimen consisting of fludarabine and low-dose total body irradiation (TBI), as well as 50 mg/kg of cyclophosphamide on day + 3 post-transplant, followed by tacrolimus and mycophenolic mofetil (MMF) on day + 4 for GvHD prophylaxis. Owing to a high rate of graft rejection (2 out of the first 3 patients), cyclophosphamide 14.5 mg/kg was introduced into the conditioning regimen. This adaptation resulted in an 80% primary
en graftment rate (8 out of 10 patients), giving proof of concept to move into next phase studies.45
As the initial phase I study ultimately had a high cumulative incidence of graft failure and severe GvHD at 6 months post-transplant, Luznik et al.44 modified the regimen by adding an additional dose of cyclophosphamide 50mg/kg on day +4 post-transplant (Figure 2B). In a collaborative phase 2 trial between Hopkins and Seattle, 68 patients with AML (n=27) received the revised regimen, and results yielded an 87% engraftment rate, one-year non-relapse mortality (NRM) and relapse of 15% and 51%, respectively, and two-year OS and event-free survival (EFS) of 36% and 26%, respectively. Additionally, the cumulative incidences (CI) of grades II-IV and grade III-IV aGvHD by day 200 were 34% and 6%, respectively. A trend towards a lower incidence of extensive cGvHD with the use of 2 doses of PTCy as compared to one dose was noted (5% vs. 25%, P=0.05). In an updated analysis of 210 recipients of NMA haploBMT, the Hopkins group reported similar outcomes.46

Due to the early reports of success with unmanipulated haploidentical HCT and pioneering of PTCy for prevention of GvHD, other centers, mainly in Western Europe and the USA, have favored the use of TCR grafts over TCD haploHCT.46,47 Ciurea et al.44 reported significantly improved 1-year NRM (16% vs. 42%, P=0.02), OS (64% vs. 30%, P=0.02) and progression-free survival (PFS) (50% vs. 21%, P=0.02) in 65 consecutive patients treated with a myeloablative TCR haploBMT with PTCy (n=32), compared to a TCD PBSC graft with ATG followed by infusion of CD34+ selected cells and no other post-transplantation immunosuppression (n=33). Engraftment rate and grade II-IV aGvHD were not significantly different, whereas cGvHD was significantly lower in patients treated with a TCR graft. In conclusion, given the ease of donor acquisition and administration of PTCy-based protocols alongside the favorable results seen in patients with high-risk hematologic malignancies, more investigation into the role of haploHCT in the early steps of decisional algorithms for the treatment of acute leukemias is ongoing.

Comparative donor studies of haploidentical transplantion for acute myeloid leukemia

Haploidentical versus matched sibling or unrelated donor transplantation

At present there are no prospective randomized comparisons of transplantations using a haploidentical donor versus a MSD or MUD for AML. Based on several non-randomized comparative studies evaluating transplantation outcomes following haploidentical transplantation with post-transplant cyclophosphamide or other in vivo T cell-depletion methods,10,48-57 the combined data suggest similar outcomes for haploHCT compared with MSD and MUD HCT. Table I summarizes the available comparative studies of haploHCT with PTCy platform versus MSD or MUD HCT. In one of the earliest studies of haploHCT with PTCy, Bashey et al.49 demonstrated equivalent primary outcomes of 271 patients with a variety of hematologic malignancies (~34% AML), who contemporaneously underwent a T cell-replete haploidentical MSD or MUD transplant. However, post-relapse survival at 12 months was unexpectedly lower compared to a well-matched MSD or MUD HCT (17% vs. 67% vs. 63%, P=0.001). In an updated cohort of 475 patients (~36% AML) and median follow-up of 45 months, these investigators again reported non-significant differences between haplo, MSD, and MUD transplants in DFS (54% vs. 56% vs. 50%), OS (57% vs. 72% vs. 59%), CI of NRM (17% vs. 14% vs. 16%), and relapse (29% vs. 30% vs. 34%) at 2 years after transplantation. The CIs of grade II-IV aGvHD were not significantly different between haplo and MUD HCT, however, haploHCT was associated with a significantly higher incidence of aGvHD compared to MSD (P=0.005 for grade II-IV). The 2-year CI of moderate-severe cGvHD was also significantly lower in haploHCT than in MSD or MUD HCT recipients (51% vs. 44% vs. 47%, P=0.05),

![Figure 2. Commonly used platforms used in haploidentical-related transplantation](image-url)
and showed a similar trend for patients receiving a PBSC graft only. In another contemporaneously treated cohort of 227 patients with AML/myelodysplastic syndrome (MDS), Di Stasi et al. reported superimposable survival curves between haplo and 10/10 HLA MUD HCT, a non-significant improvement in outcomes with MUD HCT and a similar CI of GvHD across all donor groups.

In the largest study carried out in the USA focusing on AML, Ciurea et al. utilized the Center for International Blood and Marrow Transplant Research (CIBMTR) registry data and reported comparable 3-year OS following haploidentical (n=192) and 8/8 HLA matched MUD HCT (n=1982) in patients with AML in various disease stages (CR1, CR2, and more advanced) who received either a myeloablative (MA) (45% vs. 50%, P=0.38) or RI (46% vs. 44%, P=0.71) conditioning regimen. Further subset analysis revealed no differences in 3-year NRM (14% vs. 20%, P=0.14) or relapse (44% vs. 39%, P=0.37) by donor type in the MA cohort, however, there was a significant decrease in 3-year NRM (9% vs. 23%, P=0.001) and increase in relapse (58% vs. 42%, P=0.006) in the RI group. In both cohorts, 3-month grade II-IV and grade III-IV aGvHD, and 3-year cGvHD were lower after haploidentical compared with MUD transplants (MA: grade II-IV aGvHD: 16% vs. 33%, P<0.0001; grade III-IV aGvHD: 7% vs. 13%, P=0.02; cGvHD: 30% vs. 53%, P<0.0001; RI: grade II-IV aGvHD: 19% vs. 28%, P=0.05; grade III-IV aGvHD: 2% vs. 11%, P<0.0001; cGvHD: 33% vs. 52%, P=0.002). In this study, the majority of recipients of haplo-HCT received a BM graft, whereas PBSC were predominantly utilized in MUD HCT. Owing to the limitations inherent in an observational registry study, the investigators could not assess the impact of the donor source of stem cells on clinical outcomes. To address this question, Rashidi et al. reported results from a single-center retrospective analysis of 140 patients who underwent a haplo-HCT (n=52) or MUD HCT (n=88) with PBSC. This group showed a significantly faster neutrophil and platelet recovery in the MUD HCT.

Table 1. Comparative studies of haploidentical HCT with PTCy versus matched donor HCT.

<table>
<thead>
<tr>
<th>Author</th>
<th>Disease, no of pts. (AML %)</th>
<th>Condition Intensity (%)</th>
<th>graft Source (%)</th>
<th>Donor Type (%)</th>
<th>Engraft (%)</th>
<th>aGvHD II-IV (d)</th>
<th>aGvHD III-IV (d)</th>
<th>cGvHD (year)</th>
<th>OS (year)</th>
<th>DFS (year)</th>
<th>Relapse (year)</th>
<th>NRM (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bashey et al.</td>
<td>AML, 271 (34)</td>
<td>MA (50) PB (50)</td>
<td>BM (17) PBS (83) Both (<1)</td>
<td>MUD (43)</td>
<td>97.5</td>
<td>27% (P=NS)</td>
<td>8% (P=NS)</td>
<td>11% (P=0.006)</td>
<td>70% (P=NS)</td>
<td>63% (P=NS)</td>
<td>56% (P=NS)</td>
<td>44% (P=0.06)</td>
</tr>
<tr>
<td>Di Stasi et al.</td>
<td>AML/MDS, 227 (85)</td>
<td>RI</td>
<td>BM (37) PBS (63)</td>
<td>MUD (38)</td>
<td>96</td>
<td>29% (P=0.709)</td>
<td>6% (P=0.044)</td>
<td>21% (P=0.125)</td>
<td>56% (P=0.064)</td>
<td>56% (P=0.064)</td>
<td>31% (P=0.064)</td>
<td>35% (P=0.064)</td>
</tr>
<tr>
<td>Ciurea et al.</td>
<td>AML, 1349 (100)</td>
<td>MA</td>
<td>BM (23) PBS (77)</td>
<td>MUD (39)</td>
<td>96</td>
<td>19% (P<0.001)</td>
<td>11% (P<0.001)</td>
<td>14% (P<0.001)</td>
<td>46% (P=0.06)</td>
<td>56% (P=0.06)</td>
<td>38% (P=0.06)</td>
<td>25% (P=0.06)</td>
</tr>
<tr>
<td>Ciurea et al.</td>
<td>AML, 825 (100)</td>
<td>RI</td>
<td>BM (19) PBS (81)</td>
<td>MUD (39)</td>
<td>96</td>
<td>19% (P=0.05)</td>
<td>11% (P=0.005)</td>
<td>14% (P=0.005)</td>
<td>46% (P=0.06)</td>
<td>56% (P=0.06)</td>
<td>38% (P=0.06)</td>
<td>25% (P=0.06)</td>
</tr>
<tr>
<td>Bashey et al.</td>
<td>AML, 475 (36)</td>
<td>MA (49) RI (51)</td>
<td>BM (21) PBS (79)</td>
<td>MUD (39)</td>
<td>96</td>
<td>21% (P<0.005)</td>
<td>9% (P<0.005)</td>
<td>14% (P<0.005)</td>
<td>46% (P=0.06)</td>
<td>56% (P=0.06)</td>
<td>38% (P=0.06)</td>
<td>25% (P=0.06)</td>
</tr>
<tr>
<td>Rashidi et al.</td>
<td>AML, 140 (50)</td>
<td>MA (44) PBS (56)</td>
<td>MB (100) MUD (63)</td>
<td>MUD (38)</td>
<td>96</td>
<td>19% (P=0.05)</td>
<td>11% (P=0.005)</td>
<td>14% (P=0.005)</td>
<td>46% (P=0.06)</td>
<td>56% (P=0.06)</td>
<td>38% (P=0.06)</td>
<td>25% (P=0.06)</td>
</tr>
<tr>
<td>How et al.</td>
<td>AML, 99</td>
<td>MA (72) RI (28)</td>
<td>BM (99) PBS (1)</td>
<td>MUD (39)</td>
<td>96</td>
<td>19% (P=0.05)</td>
<td>11% (P=0.005)</td>
<td>14% (P=0.005)</td>
<td>46% (P=0.06)</td>
<td>56% (P=0.06)</td>
<td>38% (P=0.06)</td>
<td>25% (P=0.06)</td>
</tr>
<tr>
<td>Rashidi et al.</td>
<td>AML, 83</td>
<td>MA (42) RI (58)</td>
<td>PM (100) MUD (25)</td>
<td>MUD (38)</td>
<td>96</td>
<td>19% (P=0.05)</td>
<td>11% (P=0.005)</td>
<td>14% (P=0.005)</td>
<td>46% (P=0.06)</td>
<td>56% (P=0.06)</td>
<td>38% (P=0.06)</td>
<td>25% (P=0.06)</td>
</tr>
</tbody>
</table>

Represents combined MSD and MUD transplant group. *Represents MUD (n=35), partially mismatched (n=6); mismatched (n=2). Represents combined MSD and MUD transplant group. aGvHD, acute graft-versus-host disease; AML, acute myeloid leukemia; BM, bone marrow; cGvHD, chronic graft-versus-host disease; d, day; DFS, disease-free survival; haplo, haploidentical; MA, myeloablative; MD, mismatched donor; MSD, myelodysplastic syndrome; MUD, matched sibling donor; MUD, matched unrelated donor; NRM, non-relapse mortality; NR, not reported; NS, not significant; OS, overall survival; PB, peripheral blood; RI, reduced intensity; UD, unrelated donor; yr, year.
group, but no statistically significant difference in OS, NRM, aGvHD or cGvHD at 1.5 years. Lastly, the refined disease risk index (DRI) developed by Armand and colleagues in order to help stratify outcomes based upon disease risk and stage has been used to compare the effects of the graft-versus-tumor response mediated by NMA haploBMT with PTCy against historical outcomes in the setting of HLA-matched donor HCT following RI conditioning. Risk-stratified disease and their associated in the setting of HLA-matched donor HCT following RI conditioning. NMA haploBMT with PTCy against historical outcomes 29% effects of the graft-versus-host disease (GVHD) on leukemic cells. The investigators determined no toxicity due to the presence of mismatched major HLA antigens on leukemic cells. The investigators determined no difference in the probability of relapse between recipients of RI HLA-matched donor transplantation.

The viability of T cell-replete haploidentical HCT with post-transplantation cyclophosphamide in patients with active AML has also been described. How et al. compared outcomes of 99 patients who received either a MSD (n=32), unrelated donor (all unrelated, n=43; MUD, n=35), or a haploidentical related (n=24) donor transplantation for active AML, defined by ≥5% blasts in the pre-transplantation BM, persistent cytogenetics, or extramedullary disease. With a median follow-up of 18 months, no statistically significant differences between MSD, unrelated donor, and haploidentical donor HCT in 1- and 2-year OS were identified (1 yr: 28% vs. 41% vs. 45%; 2 yr: 28% vs. 29% vs. 36%, P=0.75), EFS (1 yr: 27% vs. 28% vs. 39%; 2 yr: 13% vs. 22% vs. 23%, P=0.95), TRM (1 yr: 42% vs. 25% vs. 26%; 2 yr: 42% vs. 29% vs. 26%, P=0.49), or 1-year relapse (28% vs. 48% vs. 33%, P=0.40). Similarly, the CI of grades III-IV aGvHD at day 100 (25% vs. 30% vs. 28%, P=0.74) and severe cGvHD at 1 year (10% vs. 15% vs. 10%, P=0.61) were comparable. Although not evaluated in a comparative donor study, RI T cell-replete haploHCT incorporating donor change and utilizing PTCy for postgrafting immunosuppression has also been successfully used for patients with AL relapsing after a first autologous or allogeneic transplantation. These results preliminarily support the decision to use a haploidentical related donor source in transplantation of patients with active AML or relapsed AML after first transplantation, as both of these patient populations have an urgent indication to proceed to transplantation and may have a readily available haploidentical family donor.

The ALWP of the EBMT have also published results of several large multi-center comparative studies using EBMT registry data (Table 2). In the first retrospective comparative analysis of 10,679 patients with AL who received allogeneic HCT from a MSD or a haploidentical donor, Ringden et al. sought to determine whether a stronger graft-versus-leukemia (GvL) effect is exerted with T cell-deplete or T cell-replete haploidentical transplantation due to the presence of mismatched major HLA antigens on leukemic cells. The investigators determined no difference in the probability of relapse between recipients of haploidentical and MSD grafts. In a more recent study, Salvatore et al. compared outcomes of T cell-replete haploHCT (n=185) to those from MSD HCT (n=2,469) among 2,654 adults with intermediate-/high-risk AML in first CR. GvHD prophylaxis consisted of PTCy in 74% of patients and ATG in 26%. In multivariate analyses of patients with intermediate-risk AML, haploHCT was associated with reduced 2-year leukemia-free survival (LFS), OS and GvHD-free, relapse-free survival (GRFS), and higher NRM as compared to MSD HCT. In high-risk AML patients, 2-year RI was lower in haploHCT, however, no other differences were observed in NRM, LFS, OS, and GRFS. In a separate registry study which focused on 6,545 patients with poor-risk AML in CR1, Versluis et al. reported similar 2-year OS following MSD (n=3,511) with 10/10 MUD (n=1,959) and haploHCT (n=193) (hazard ratio [HR], 0.99 and 1.12, respectively), whereas both 9/10 MUD (n =549) and UCB (n=333) grafts were associated with inferior OS (HR, 1.23, P=0.005; and HR, 1.54, P<0.001, respectively). Although the RI was decreased for 10/10 MUD (HR, 0.74, P<0.001) and haplo (HR, 0.60, P=0.001) compared with MSD HCT, NRM was significantly higher. Lastly, Piemontese et al. described clinical outcomes from T cell-replete haploHCT versus allogeneic transplants from 10/10 HLA matched and 9/10 HLA mismatched unrelated donors (MMUD) for adult patients with de novo AL in CR1/CR2. In this cohort, 265 patients (AML, n=176) received a haploHCT, 2,490 patients (AML, n=1,645) received a 10/10 MUD, and 815 patients (AML, n=510) received a MMUD transplant. Post-transplant cyclophosphamide was used as GvHD prophylaxis in 40% of haploHCT. Among patients with AML, LFS, OS, and NRM were significantly improved in 10/10 MUD compared to haploHCT, but there was no difference in GRFS, grade II-IV aGvHD or cGvHD. Further, no differences were found in GvHD or survival outcomes between 9/10 MMUD HCT and haploHCT. Based on the collective data, outcomes from haploidentical transplantation are encouraging, however, a larger cohort, longer follow-up period, and prospective comparative donor analyses are needed in order to firmly establish its place in the hierarchy of alternative donors. At this time, the ALWP-EBMT supports a 10/10 MUD as the best donor option in the absence of a MSD, and further supports the use of a haploidentical donor or 9/10 MMUD as equally viable alternatives in the absence of a fully matched donor, or in the case of the need for an urgent transplant.

Haploidentical versus UCBT

Single- and multi-center studies have also shown the value of single or double UCBT for AML in the setting of an urgent need for transplant and lack of an HLA-matched sibling or an unacceptable unrelated donor. Therefore, early comparative studies of alternative donor sources focused on examining differences in clinical outcomes with the use of haploidentical or UCB as sources of stem cells (Figure 3). In the earliest retrospective comparative study, the Eurocord group, in collaboration with the ALWP-EBMT, reported outcomes on 220 adult recipients who received T cell-deplete haploHCT with PBSC (n=154) or unrelated single or double UCBT (n=66) for AML. The 2-year incidences of relapse, TRM and LFS were not statistically different after haploHCT or UCBT, however, UCBT was associated with delayed neutrophil recovery and a higher incidence of aGvHD. In another large EBMT observational study of 918 AML patients (haplo, n=158; UCBT, n=558), Ruggeri et al. demonstrated similar findings of a comparable RI (HR=0.95, P=0.76), NRM (HR=1.16, P=0.47), and LFS (HR=0.78, P=0.78) between unmanipulated haploHCT and UCBT. While grade II-IV and grade III-IV aGvHD were similar between the two groups, the CI of cGvHD was less in the UCBT cohort (HR=0.65, P=0.008).
In order to study the reproducibility of the results found in retrospective analyses, the USA Blood and Marrow Transplantation Clinical Trials Network (BMT CTN) conducted two parallel multicenter prospective clinical trials focused on outcomes associated with unmanipulated related haplo-BM graft with PTCy (n=50) and dUCBT (n=50).

Table 2. Published ALWP-EBMT studies of haploidentical transplantation in adults with AML.

<table>
<thead>
<tr>
<th>Reference (year)</th>
<th>Study Objective</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocha et al.10 (2005)</td>
<td>Retrospective comparative analysis of outcomes of 364 adult patients with AML/ALL receiving either UCBT versus T cell-depleted PB haploHCT between 1998-2002.</td>
<td>In AML, no difference between groups in relapse, TRM, and LFS. UCBT had increased grade II-IV aGvHD.</td>
</tr>
<tr>
<td>Ciceri et al.15 (2008)</td>
<td>Retrospective analysis of outcomes of 266 adult patients with de novo acute AML/ALL receiving T cell-depleted PB haploHCT between 1995-2004.</td>
<td>Engraftment occurred in 91% of the patients; 2-year LFS was 48% ± 10% for patients with AML in CR1; 21% ± 5% in ≥ CR2, and 1% ± 1% in non-remission; GvHD was minimal.</td>
</tr>
<tr>
<td>Gorin et al.10 (2015)</td>
<td>Matched pair analysis of outcomes of 188 T cell-replete haploHCT and 356 autologous transplants (ASCT) in adult patients with acute leukemia between 2007-2012.</td>
<td>Haploidentical centers were divided into “expert” vs. “regular” based on the number of haploHCT performed. NRM was higher among all haploHCT compared to ASCT. LFS and OS were higher following ASCT compared to haploHCT in regular centers and similar cGvHD.</td>
</tr>
<tr>
<td>Ruggeri et al.10 (2015)</td>
<td>Retrospective comparative analysis of outcomes of 1,446 adult patients with de novo AML/ALL receiving either UCBT versus unmanipulated haploHCT between 2007-2012.</td>
<td>In multivariate analysis of the AML group, UCBT was associated with lower cGvHD. No significant differences in relapse, NRM, and LFS between the two groups.</td>
</tr>
<tr>
<td>Piemontese et al.10 (2015)</td>
<td>Retrospective analysis of outcomes of 229 adult patients with de novo AML/ALL in CR or non-remission who received an unmanipulated haploHCT between 2007-2011.</td>
<td>Engraftment occurred in 93% of the patients; For the total group: 3-year relapse, LFS, OS and NRM was 42%, 30%, 37%, and 28%. 100-day CI of Grade II-IV aGvHD (32%) and 3-year CI of cGvHD (34%) were similar to historical outcomes of MSD HCT.</td>
</tr>
<tr>
<td>Ringden et al.15 (2016)</td>
<td>Retrospective comparative analysis of relapse and survival outcomes of 10,679 adult patients with AML/ALL receiving MSD HCT versus T cell-replete or deplete haploHCT between 2007-2012.</td>
<td>No difference in relapse between MSD and haploHCT groups while NRM and LFS was superior in the MSD group.</td>
</tr>
<tr>
<td>Rubio et al.10 (2016)</td>
<td>Retrospective comparative analysis of outcomes of 696 adult patients with AML/ALL receiving T cell-replete haploHCT with RI versus MA conditioning regimen between 2001-2012.</td>
<td>Multivariable analysis in AML showed no difference in NRM, cGvHD, LFS, and OS. There was a trend toward high relapse with RI conditioning.</td>
</tr>
<tr>
<td>Sun et al.15 (2016)</td>
<td>Retrospective one-to-one matched pair comparative study of outcomes following GvC-based haploHCT and MA 10/10 MUD HCT in 174 patients with de novo intermediate-risk (based on cytogenetics) AML in CR1.</td>
<td>Similar 5-year LFS, OS, relapse, NRM, grade III-IV aGvHD, and cGvHD.</td>
</tr>
<tr>
<td>Ruggeri et al.15 (2016)</td>
<td>Retrospective comparative analysis of outcomes of 451 adult patients with AML/ALL in CR/CR2 receiving T cell-replete haploHCT with PTCy with PB versus BM stem cells between 2010-2014.</td>
<td>Multivariable analysis showed that PB was associated with increased risk of grade II-IV aGvHD. Otherwise, no significant difference in other GvHD or survival outcomes.</td>
</tr>
<tr>
<td>Piemontese et al.15 (2017)</td>
<td>Retrospective comparative analysis of outcomes of 3,568 adult patients with de novo AML/ALL in CR1/CR2 who received T cell-replete haploHCT versus 10/10 MUD or 9/10 MMUD HCT between 2007-2013.</td>
<td>Weighted Cox model showed significantly higher LFS and OS in transplants from 10/10 MUD compared to haploHCT but no difference between 9/10 MMUD and haploHCT. Acute and chronic GvHD were not impacted by the donor type.</td>
</tr>
<tr>
<td>Versluis et al.15 (2017)</td>
<td>Retrospective comparative analysis of outcomes of 6,545 adult patients with poor-risk AML in CR1 receiving an allogeneic HCT using MRD versus 10/10 or 9/10 MUD, UCB, T cell-replete haplo-identical donor between 2000-2014.</td>
<td>Multivariable analysis confirmed no differential impact on OS and RFS following MRD, 10/10 MUD, or haplo HCT, and significantly worse OS with 9/10 MUD and UCB grafts. Relapse was decreased for 10/10 MUD compared to MRD and haploHCT, and NRM was significantly higher for all alternative donors compared to MRD HCT.</td>
</tr>
<tr>
<td>Savatore et al.15 (2017)</td>
<td>Retrospective comparative analysis of outcomes of 2,654 adult patients with int-AML or high-risk AML in CR1 receiving T cell-replete haploHCT versus MSD HCT.</td>
<td>Int-AML: multivariate analysis showed reduced LFS, OS, GRFS, and higher NRM after haploHCT. High-risk AML: increased grade II-IV aGvHD and lower relapse incidence with haploHCT, and similar NRM, LFS, and OS between both donor groups.</td>
</tr>
<tr>
<td>Canaani et al.86 (2017)</td>
<td>Retrospective comparative analysis of outcomes in 837 adult patients with AML who received ABO-matched versus ABO-mismatched haploHCT between 2005-2014.</td>
<td>Major ABO mismatching was associated with inferior day 100 engraftment, and bi-directional mismatching had increased risk of grade II-IV aGvHD. Otherwise, NRM, relapse, LFS, OS, and cGvHD were similar.</td>
</tr>
</tbody>
</table>

following identical RI conditioning regimens for patients with high-risk leukemia or lymphoma (AML: haplo, n=22; dUCB, n=29). Results from this trial successfully replicated those from single-center studies and showed no significant differences between the two modalities.84 Furthermore, both cohorts had comparable survival rates to patients with high-risk hematologic malignancies who underwent MUD HCT with blood or marrow after RI conditioning.75 An ongoing phase III multicenter randomized trial (clinicaltrials.gov Identifier: 01597778) is attempting to clarify the relative efficacies of double unrelated cord and haploidentical related BMT, and the estimated completion date of the trial is June 2019.

The Beijing experience

An alternative strategy for prevention of GvHD after T cell-replete haploidentical donor transplantation has incorporated pre-transplant ATG. The Peking University group in China pioneered an approach that used a combination of G-CSF priming of the donor, intensified immunosuppression, ATG, and combination of T cell-replete BM plus peripheral blood as the stem cell source (GIAC protocol) (Figure 2C).74,93 An early trial in patients with acute leukemia, including 108 AML patients, suggested encouraging GvL effects with universal engraftment, low incidence of relapse following transplantation (15 out of 108 AML patients) and 3-year relapse probabilities of 11.9% and 20.2% in the standard- and high-risk AML groups, resulting in DFS rates of 71% and 56%, respectively. While TRM at D+100 was favorable in both risk groups, the 3-year TRM in standard-risk and high-risk AML groups was 19.4% and 29.4%. The CI of grade II-IV and grade III-IV aGvHD were 45.8% and 13.4% at D+100, respectively, while the 3-year CI of total cGvHD and extensive cGvHD were 53.9% and 22.6%.75 An updated trial including 756 patients with AL over a time period of 9 years confirmed their previous findings.76 A subsequent comparative study of outcomes following GIAC-based haploidentical HCT and myeloablative (non-TBI based) MUD HCT with blood or marrow after RI conditioning established in the GIAC haploHCT protocol, Ruggeri et al.78 compared this GvHD prophylaxis regimen to the PTCy platform in the setting of unmanipulated haploHCT for patients with various-risk AML in CR1 or CR2. A total of 308 patients were studied (PTCy, n=193; ATG, n=115), and both groups were well matched in regards to recipient and donor age, AML disease risk, disease status at transplant, and conditioning intensity. Notably, a BM stem cell source was used more frequently in the PTCy group (60.1% vs. 39.9%, P=0.01), and that cohort also had shorter follow up (18 vs. 36 months, P<0.001). At day 100, similar outcomes in grade II-IV aGvHD were observed between patients receiving PTCy versus ATG (31% vs. 21%, P=0.07), however, grade III-IV aGvHD was significantly lower in the PTCy group (4.7% vs. 12.5%, P=0.01). The incidence of 2-year cGvHD did not differ between the two groups (33.7% vs. 28.3%, P=0.33). Multivariate analysis of NRM, LFS, OS, and GRFS also significantly favored the PTCy regimen.

Although different haploHCT methods have not been prospectively compared in a randomized fashion, the available cumulative evidence demonstrates the feasibility of haploidentical transplantation and the benefit of having a readily accessible donor, regardless of the platform used.

Ongoing research in T cell-replete haploidentical transplantation

Since the demonstration of the safety and efficacy of NMA haploHCT with PTCy, there has been increasing research interest in optimizing clinical outcomes for different patient populations through modifications of the original platform. For example, some groups have explored optimizing the anti-leukemia effects of haploHCT, particularly in high-risk or advanced AML, by intensifying the conditioning regimen or substituting BM with PBSC as the stem cell graft source, due to the concern of high relapse rates associated with NMA haploHCT and PTCy. In the former setting, several single-center non-comparative studies have reported a low risk of acute and chronic GVHD and encouraging rates of TRM and OS with myeloablative conditioning.79 These observations were recently validated by the first large retrospective comparative analysis performed by the ALWP-EBMT showing similar OS, LFS, NRM, and cGvHD between MA and RI conditioning regi-
Table 3. Comparative studies of haploidentical HCT versus umbilical cord blood transplantation.

<table>
<thead>
<tr>
<th>Author</th>
<th>Disease, no of pts. (AML, n)</th>
<th>Condition Intensity (%)</th>
<th>Graft Source (no. of patients)</th>
<th>Donor Type (no. of patients)</th>
<th>Engraft (%)</th>
<th>aGvHD II-IV (yr)</th>
<th>cGvHD (yr)</th>
<th>OS (yr)</th>
<th>DFS (yr)</th>
<th>Relapse (yr)</th>
<th>NRM (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruggeri et al.</td>
<td>AML, 220</td>
<td>NR</td>
<td>NR (haplo)</td>
<td>Haplo (154) UCB (66)</td>
<td>NR</td>
<td>5 +/- 5%</td>
<td><0.0001</td>
<td>NR</td>
<td>NR</td>
<td>24±4% (2)</td>
<td>58±4%</td>
</tr>
<tr>
<td>Brunstein et al.</td>
<td>ALL, 100 (AML, 51)</td>
<td>RI (100)</td>
<td>BM (50)</td>
<td>Haplo (50) UCB (50)</td>
<td>94</td>
<td>32% (d100)</td>
<td>13% (1)</td>
<td>48% (1)</td>
<td>45% (1)</td>
<td>24±5% (2)</td>
<td>18±3%</td>
</tr>
<tr>
<td>El-Cheikh et al.</td>
<td>ALL, 150 (AHL, 48)</td>
<td>RI (100)</td>
<td>BM (NR)</td>
<td>Haplo (69) UCB (81)</td>
<td>94</td>
<td>34% (1)</td>
<td>6% (2)</td>
<td>36%</td>
<td>36%</td>
<td>18±4% (2)</td>
<td>5±4%</td>
</tr>
</tbody>
</table>

The data are from 2 separate but parallel multicenter phase 2 trials with identical objectives, eligibility, and clinical endpoints. The clinical outcomes should not be compared directly. *Year not reported. †Multivariable analysis of relapse was not statistically different between the haplo and UCB groups (HR = 0.95, P = 0.76); aGvHD: acute graft-versus-host disease; AML: acute myeloid leukemia; ALL: acute lymphocytic leukemia; BM: bone marrow; cGvHD: chronic graft-versus-host disease; DFS: disease-free survival; haplo: haploidentical; MA: myeloablative; NRM: non-relapse mortality; NR: not reported; OS: overall survival; PB: peripheral blood; RI: reduced-intensity; UCB: umbilical cord blood; yr: year.

mems in T cell-replete haploHCT, in particular for patients with AML in CR1. Multivariable analyses revealed a trend towards higher relapse incidence, with RI versus MA conditioning (HR 1.34, P = 0.09), and when taken collectively the data supported the use of either high or low intensity conditioning haploHCT with PTCy in the first-line treatment of high-risk AML. In this study, there was an increased risk of grade II-IV aGvHD and cGvHD independent of the conditioning regimen intensity and of the use of PTCy with the use of a PBSC graft compared to BM, but no difference was seen with regard to the incidence of NRM and other survival outcomes. Ruggeri et al. also described the use of PBSC as the sole factor associated with an increased risk of grade II-IV aGvHD (HR 2.2, 95% CI 1.27-3.9, P = 0.005) in patients with AL, the majority of whom were transplanted with a MA regimen for AML in CR1. Otherwise, the type of stem cell graft (PBSC vs. BM) proved to have no significant difference on grade III-IV aGvHD, cGvHD, relapse, or survival. In line with the attempts to exploit a PBSC source, Peccatori et al. developed a calcineurin inhibitor-free GVHD prophylaxis based on rapamycin, mycophenolate mofetil and ATG, with the aim of promoting a fast post-transplant immune recovery with a preferential accumulation of regulatory T cells. Recently, this sirolimus platform has been modified with the substitution of ATG by PTCy, which showed a significant reduction in cGvHD. In the NMA haploHCT setting, both Castagna et al. and O’Donnell et al. reported comparable outcomes in acute and chronic GVHD, engraftment rates, NRM, and OS after haplo-BM or haplo-PBSC transplantation; however, the incidence of relapse at 1 to 3 years was significantly lower after haplo-PBSC compared with haplo-BM transplants in the latter study. Other groups have also demonstrated the feasibility of NMA haploHCT with either PBSC or BM stem cells in older adults. The significance of ABO incompatibility on outcomes after haploHCT for AML have recently been published by the ALWP-EBMT, and preliminarily demonstrate a significantly increased risk of grade II-IV aGvHD with bi-directional ABO mismatching and a lower OS rate in patients with major ABO mismatching transplanted with BM grafts. Lastly, the impact of haploHCT for specific high-risk AML cytogenetic and molecular risk groups as well as the role of post-transplant cellular therapies are of interest.

The significance of pre-transplant MRD as a poor prognostic and predictive factor of outcomes after allogeneic HCT in AML has been reported. For example, the Seattle group published inferior 3-year OS and relapse outcomes among AML patients receiving a myeloablative matched donor HCT with pre-transplant MRD-positive (morphologic remission) compared to MRD-negative (morphologic remission), and further demonstrated comparable outcomes to patients with active disease at the time of HCT. Several other groups have studied the significance of pre-transplant MRD on a more granular level and demonstrated that the level of pre-transplant MRD may differentially impact post-transplantation outcomes. The significance of pre-transplant MRD has also been described in the setting of haploHCT. Wang et al. retrospectively evaluated outcomes of 255 patients with AML in CR1 or CR2. Multivariate analysis indicated failure of CR after 2 courses of induction therapy as the strongest independent prognostic factor for relapse and LFS. In subgroup analysis, positive pre-transplant MRD as compared to negative MRD also resulted in worse LFS at 3 years (76% vs. 52%, P = 0.041) and CI of relapse at 2 years (10% vs. 35%, P = 0.002). These results must be interpreted cautiously due to the limited patient sample (negative MRD, n=110; positive MRD, n=20). Conversely, other groups have reported no significant influence of MRD status (positive vs. negative) prior to haploHCT on PFS or relapse for patients with AML in CR1/CR2, and further hypothesize that while detectable MRD before HCT is a strong unfavorable prognostic factor, its adverse impact may be overcome by the potentially stronger GvL effects of unmanipulated haploHCT.

Perspectives

Over the last two decades, the international BMT community have witnessed incredible advances in HLA-typ-
ing and alternative donor transplantation strategies, such
that in the present day nearly all transplant-eligible
patients with AML will have an available donor.
Unmanipulated haploidentical related transplantation
with post-transplant cyclophosphamide has emerged as a
potentially powerful strategy for the cure of AML and is
the dominant haploHCT platform in Europe.105 Other sig-
nificant advantages of haploHCT with PTCy include its
associated low non-relapse mortality and GvHD, ease of
donor accessibility often leading to minimal length of time
to transplantation, and low acquisition costs. The cost-
effectiveness associated with haploHCT with PTCy may
have the most appeal in developing countries, where eco-
nomic resources are more limited.105 Unmanipulated hap-
loidentical transplantation with post-transplantation
immunosuppression also shows promise in decreasing
post-transplant infections and death due to infections,
however, further data on immune reconstitution, infec-
tions and their related complications (i.e., hemorrhagic
cystitis) among different haploHCT strategies are war-
ranted.106 The incidence of post-transplant cardiomypa-
thy secondary to GvHD prophylaxis with high-dose
PTCy appears non-significant in the absence of severe
infection,107 however, further research evaluating predic-
tive factors for cardiomyopathy following PTCy based
HCT are necessary. While there has been questioning of
donor-derived malignancies (DDM) associated with
PTCy, a recent retrospective study by the Hopkins group
showed an extremely low proportion of patients with a
DDM (4 out of 789) over a 10-year period, suggesting that
PTCy does not appear to increase the risk of DDM.108
However, the authors acknowledge the short follow-up
period of their study and report the need for continued
close monitoring of DDMs over a longer follow-up time.

Another key issue arising in the setting of unmanipulat-
ed haploHCT is the selection of the “best” donor, as some
patients will have multiple haploidentical donor candi-
dates and donor selection may significantly impact
GvHD, relapse, TRM, and survival outcomes. Owing to
improved approaches of unmanipulated haploHCT with
PTCy or ATG-based GvHD prophylaxis, the effects of
HLA disparity have vanished, nonetheless, other donor-
related variables should be considered. These include
the selection of donors for whom there are no recipient
donor-specific antibodies (DSA); alternatively, measures
to remove DSA should be undertaken in the patient; the
selection of a younger, male donor over an older, female
donor due to the potential for superior survival, decreased
risk of grade II-IV aGvHD and age-related clonal
hematopoiesis leading to subsequent malignancies; and
the selection of an ABO compatible donor, followed by a
minor ABO mismatched and then a major ABO mis-
matched donor. Other factors to consider include donor
and recipient cytomegalovirus (CMV) serostatus, NK cell
alloreactivity and KIR haplotype matching, and non-inher-
ited maternal HLA antigens (NIMA) mismatching.109
However, more research is needed as the significance of
each of these factors may change depending on the
haploHCT protocol or platform used, and indeed, may
vanish, due to the emergence of new variables as
haploHCT becomes increasingly utilized.

In conclusion, the growing body of literature has consistently demonstrated comparable outcomes of haploidentical donor HCT as compared to an UCB, matched sibling and unrelated donor transplantation for patients with AML. However, the available studies are nonrandomized, underpowered, and lack long-term follow-up data. Accordingly, the ALWP-EBMT endorses haploidentical transplantation as a valid post-remission therapy for high-risk AML in the absence of a matched donor or in the case of the need for an urgent transplant procedure (Figure 3). Further prospective studies randomizing haploHCT to UCBT (in the USA) or to MUD or MMUD HCT (in Europe) are ongoing, and will help to establish its position in the hierarchy of alternative donors.

Position statement from the ALWP-EBMT

- Haploidentical donor transplantation is a valid option for patients with AML lacking a matched sibling or unrelated donor.
- In certain clinical situations, especially in the case of a need for an urgent transplant procedure and lack of a MDS, a readily available haploidentical donor may be considered over initiating an unrelated donor search.
- The evidence for the superiority of haploidentical vs. MMUD vs. UCBT is insufficient, but there is the potential for a cost benefit with regard to haploHCT.
- There is insufficient evidence for the superiority of one haploidentical HCT platform over another. Economic factors, together with individual center experience, may be decisive.

References

Haploidentical HCT in AML

