The mutagen and carcinogen cadmium is a high-affinity inhibitor of the zinc-dependent MutLα endonuclease

Shanen M. Sherrer,a,b Elisabeth Penlandb, and Paul Modricha,b,2

a Department of Biochemistry, Duke University Medical Center, Durham, NC 27710; and b Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710

Contributed by Paul Modrich, June 5, 2018 (sent for review April 27, 2018; reviewed by Peter Friedhoff, Dmitry A. Gordenin, and Guo-Min Li)

MutLα (MLH1-PMS2 heterodimer), which acts as a strand-directed endonuclease during the initiation of eukaryotic mismatch repair, has been postulated to function as a zinc-dependent enzyme [Kosinski J, Plotz G, Guarné A, Bujnicki JM, Friedhoff P (2008) J Mol Biol 382:610–627]. We show that human MutLα copurifies with two bound zinc ions, at least one of which resides within the endonuclease active site, and that bound zinc is required for endonuclease function. Mutagenic action of the carcinogen cadmium, a known inhibitor of zinc-dependent enzymes, is largely due to selective inhibition of mismatch repair [Jin YH, et al. (2003) Nat Genet 34:326–329]. We show that cadmium is a potent inhibitor (apparent K_i ~ 200 nM) of MutLα endonuclease and that cadmium inhibition is reversed by zinc. We also show that inhibition of mismatch repair in cadmium-treated nuclear extract is significantly reversed by exogenous MutLα but not by MutSα (MSH2-MSH6 heterodimer) and that MutLα reversal depends on integrity of the endonuclease active site. Exogenous MutLα also partially rescues the mismatch repair defect in nuclear extract prepared from cells exposed to cadmium. These findings indicate that targeted inhibition of MutLα endonuclease contributes to cadmium inhibition of mismatch repair. This effect may play a role in the mechanism of cadmium carcinogenesis.

Mismatch repair | MutLα | cadmium | carcinogen | zinc metalloenzyme

Inactivation of human MutLα (MLH1-PMS2 heterodimer, MLH1-PMS1 in yeast) results in a large increase in mutation production and strong cancer predisposition in humans (1, 2). Biochemical experiments have shown that MutLα plays an essential role in the initiation of eukaryotic mismatch repair (MMR). In physiological salt–Mg2+ buffer, MutLα functions as a strand-directed endonuclease that depends on a mismatch, MutSα (MSH2-MSH6 heterodimer) or MutSβ (MSH2-MSH3 heterodimer), and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation, although endonuclease function is demonstrable in the absence of other proteins provided that the ionic strength is low and Mg2+ substituted for Mg2+ (3–7). The endonuclease active site resides within the MutLα C-terminal dimerization domain (CTD) and depends on integrity of conserved DQHA(X2)E(X)E, ACR, and CPHGRP motifs within the PMS2 subunit (PMS1 in yeast) (3, 4, 8, 9). These motifs were postulated to comprise a binding site for a Zn2+ ion (8), and structural study of the yeast MutLα CTD revealed presence of two bound zinc ions (10). One zinc is stabilized by His703 and Glu707 of the PMS1 DQHASDEKYNFE sequence element and by interaction with Cys817 of the 44ACR motif and the C-terminal Cys769 of MLH1. PMS1 Glu707 and MLH1 Cys769 also interact with the second zinc, which is further stabilized by interaction with Cys848 and His850 of the 44CPHRGP motif (10).

Cadmium, which can replace zinc in a number of metalloenzymes (11–13), has been classified as a human carcinogen by the International Agency for Research on Cancer due to its link to lung cancer and possible involvement in cancers of the kidney and prostate (14, 15). The metal is an industrial pollutant but is also concentrated from the soil by certain plants, including tobacco, resulting in elevated blood Cd2+ levels in smokers (16).

Gordenin and coworkers (17) provided seminal insight into the mode of cadmium action with the demonstration that exposure of Saccharomyces cerevisiae to low-micromolar concentrations results in extreme hypermutability, an effect largely due to selective inhibition of MMR. Cadmium is also a mutagen in mammalian cells with about one-half the potency of activated benzo[a]pyrene (18), and as in the case of yeast, interference with MMR may contribute to this effect. Thus, cadmium disrupts MMR-dependent checkpoint activation in cultured human cells after treatment with an S$_\text{S1}$ DNA methylator (19), and injection of mice with CdCl$_2$ (1 mg/kg) results in microsatellite instability (20), which is diagnostic for MMR deficiency (2). Such findings prompted several reports attributing these effects to Cd2+ inhibition of the ATPase and mismatch recognition functions of MutSα (21–23). However, the Cd2+ concentrations required for MutSα inhibition are quite high, with apparent K_i values in the 10- to 200-μM range. This issue was clarified by Wieland et al. (23), who showed that Cd2+ inhibition of MutSα is nonspecific in nature and involves binding of about 100 Cd2+ ions to the MSH2-MSH6 heterodimer. Given the structural evidence that MutLα endonuclease function may be Zn2+ dependent (10) and the fact that Cd2+ is a known inhibitor of a number of Zn2+ metalloenzymes (11, 12), we have addressed the involvement of zinc in human MutLα function and tested the possibility that Cd2+ inhibition of MMR may reflect targeted inhibition of MutLα. We show here that...

Significance

MutLα (MLH1-PMS2 heterodimer) is an endonuclease that acts during an early step of eukaryotic mismatch repair. We show that human MutLα endonuclease copurifies with two equivalents of bound zinc, at least one of which resides within the endonuclease active site. We also show that cadmium, a known inhibitor of zinc-dependent enzymes and a potent mutagen and carcinogen, is a high-affinity inhibitor of MutLα endonuclease and that exogenous MutLα significantly reverses the mismatch repair defect in cadmium-treated human cell nuclear extract or nuclear extract prepared from cadmium-treated cells. Because the mutagenic action of cadmium is largely due to the selective inhibition of mismatch repair, these findings suggest that MutLα is a primary cadmium target for mutagenesis and presumably, carcinogenesis as well.

Author contributions: S.M.S. and P.M. designed research; S.M.S. and E.P. performed research; S.M.S., E.P., and P.M. analyzed data; and S.M.S., E.P., and P.M. wrote the paper.

Readers: P.F., Justus Liebig University; D.A.G., National Institute of Environmental Health Sciences; and G.-M.L., University of Texas Southwestern Medical Center. The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1Present address: Chemistry & Biochemistry Department, St. Mary’s College of Maryland, St. Mary’s City, MD 20686.

2To whom correspondence should be addressed. Email: modrich@biochem.duke.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807319115/-/DCSupplemental.

Published online June 25, 2018.
MutLα copurifies with two Zn\(^{2+}\) ions (at least one of which resides in the endonuclease active site), that bound Zn\(^{2+}\) is involved in endonuclease function, that Cd\(^{2+}\) is a high-affinity inhibitor of endonuclease action, and that this effect at least partially accounts for Cd\(^{2+}\) inhibition of MMR.

Results

Human MutLα is a Zinc Metalloenzyme. Structural analysis of the yeast MutLα CTD has shown presence of two bound Zn\(^{2+}\) ions (10). To evaluate zincc association with human MutLα, the protein was isolated using trace metal-grade reagents in the absence of chelator and DTT, and metal content was determined by inductively coupled plasma MS (ICP-MS) (24). Zn coelutes with MutLα during the final purification step (SI Appendix, Fig. SL4), and analysis of multiple samples of the wild-type protein showed the presence of 2.4 ± 0.3 zinc equivalents per MLH1-PMS2 heterodimer (Table 1).

Amino acid substitutions D699N or E705K within the conserved PMS2 699DQHA(E)(X)2E active site of human MutLα abolish endonuclease activity and MutLα function in MMR (3, 4, 8). The corresponding D701 residue within yeast PMS1 is not involved in zinc coordination, but E707 interacts with both active site Zn\(^{2+}\) ions in the yeast MutLα CTD structure (SI Appendix, Fig. S1B) (10). ICP-MS analysis showed that human D699N MutLα retains both zinc ions, but approximately one Zn equivalent is lost in the E705K variant (Table 1), indicating that at least one of two bound metal ions is located within the endonuclease active site.

Metal Dependence of the Basal MutLα Endonuclease Activity. Involvement of bound Zn\(^{2+}\) in MutLα endonuclease function was evaluated by treatment of the protein with the Zn\(^{2+}\)-selective chelator N,N,N′,N′-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN). After removal of the chelator by gel filtration (SI Appendix, Fig. SIC), TPEN-treated and untreated control samples were tested at high concentration (0.5 μM) for endonuclease activity on supercoiled DNA in the absence of exogenous divalent metal (Materials and Methods). As shown in Fig. 1 (red squares) untreated native MutLα displays low but detectable endonuclease activity under these conditions. We attribute this activity to MutLα endonuclease function, because it is reduced by 80% with the endonuclease-defective D699N protein (Fig. 1, red diamonds). Prior TPEN treatment dramatically reduces the endonuclease activity of wild-type MutLα, but activity is restored to about 25% of control levels by low-micromolar concentrations of ZnSO\(_4\) (Fig. 1, black circles), which have little if any effect on the activity of the untreated native protein. Because ZnCl\(_2\) activates TPEN-treated MutLα to a similar degree (SI Appendix, Fig. S2A), this is a Zn\(^{2+}\) effect. MgCl\(_2\) has no demonstrable effect on the TPEN-treated protein under these conditions, although MnCl\(_2\) modestly activates at micromolar concentrations. As discussed above, 1 mM Mn\(^{2+}\) has been shown to activate the MutLα nuclease under low-salt conditions in the absence of other proteins (3).

In view of these relatively selective metal effects on the TPEN-treated protein, we also tested the response of native MutLα to the three metals at 0.5 μM protein concentration, where the basal nuclease is readily evident in the absence of other factors (Fig. 1). As shown in SI Appendix, Fig. S2B (red circles) Mg\(^{2+}\) has no effect on basal endonuclease activity over a wide range of concentration from submicromolar to millimolar; Mn\(^{2+}\) (SI Appendix, Fig. S2B, blue circles) significantly activates at ~100 μM to 1 mM, whereas Zn\(^{2+}\) (SI Appendix, Fig. S2B, gray circles) dramatically activates over the latter concentration range. Under these conditions, no significant endonuclease activity was observed with endo-dead D699N MutLα (SI Appendix, Fig. S2B, open circles). Because the endonuclease active site is fully occupied by Zn\(^{2+}\) at low-micromolar metal concentrations (Fig. 1 and SI Appendix, Fig. S14), this nuclease activation at elevated Zn\(^{2+}\) concentrations is presumably a consequence of metal interaction with secondary sites on the protein, DNA, or both.

During the course of these experiments, we discovered an unexpected mixed metal effect that is evident at micromolar Zn\(^{2+}\) concentrations when Mn\(^{2+}\) is also present. The Zn\(^{2+}\) dependence of basal MutLα endonuclease activity scored in the presence of 1 mM Mg\(^{2+}\) is essentially identical to that in the absence of Mg\(^{2+}\) (SI Appendix, Fig. S2C, light blue circles; compare with SI Appendix, Fig. S2B, gray circles). However, basal MutLα endonuclease is activated by 1 mM Mn\(^{2+}\), and the Mn\(^{2+}\)-activated nuclease responds differently to low Zn\(^{2+}\) concentrations (SI Appendix, Fig. S2C, gray circles). Although unaffected by 0–1 μM Zn\(^{2+}\), endonuclease activity in the presence of 1 mM Mn\(^{2+}\) is inhibited by Zn\(^{2+}\) in the 1- to 10-μM range, and this inhibitory phase was followed by an activation phase at higher concentrations, similar to that observed in the presence of Zn\(^{2+}\) alone (compare gray circles in SI Appendix, Fig. S2B and C).

Table 1. Zinc content of MutLα

<table>
<thead>
<tr>
<th>MutLα</th>
<th>Zn equivalents per mole (determinations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>2.4 ± 0.3 (30)</td>
</tr>
<tr>
<td>D699N endo dead</td>
<td>2.5 ± 1.2 (7)</td>
</tr>
<tr>
<td>E705K endo dead</td>
<td>0.8 ± 0.2 (6)</td>
</tr>
</tbody>
</table>

Samples of isolated MutLα were digested with analytical nitric acid and zinc content determined by ICP-MS (Materials and Methods). Three different ICP-MS instruments were used for the metal determinations summarized here. A breakdown of these results by instrument is shown in SI Appendix, Table S1. Coelution of Zn and MutLα from a MonoS column is shown in SI Appendix, Fig. S1. Errors are ±1 SD.
patterns of Zn\(^{2+}\) inhibition and activation are observed in the presence ATP, which modestly enhances DNA incision at low zinc concentrations (SI Appendix, Fig. S2C, black circles). Because constitutive activation of basal MutL\(\alpha\) endonuclease has been observed only in the presence of Mn\(^{2+}\) and because inhibition of the endonuclease by 1–10 \(\mu\)M Zn\(^{2+}\) does not occur in the presence of Mg\(^{2+}\) (SI Appendix, Fig. S2C) or the absence of a secondary metal (SI Appendix, Fig. S2B), these findings suggest that Zn\(^{2+}\) and Mn\(^{2+}\) are competing for a common site. We suggest that Mn\(^{2+}\) activation of basal MutL\(\alpha\) endonuclease is a consequence of Mn\(^{2+}\) substitution for one or both active site zinc ions and that inhibition of the activated nuclease by low concentrations of exogenous Zn\(^{2+}\) is due to reversal of this effect.

Cd\(^{2+}\) Is a High-Affinity Inhibitor of Human MutL\(\alpha\) Endonuclease. The mutagenic action of Cd\(^{2+}\) is largely due to selective inhibition of MMR (17). Because Cd\(^{2+}\) is a known inhibitor of Zn\(^{2+}\)-dependent enzymes (11, 12), we tested Cd\(^{2+}\) effects on MutL\(\alpha\) endonuclease and ATPase in low-salt–Mn\(^{2+}\) buffer where both activities can be scored in the absence of other proteins (3, 7). As shown in Fig. 2A, the MutL\(\alpha\) endonuclease function is exclusively sensitive to Cd\(^{2+}\) inhibition, with an apparent \(K_i\) of 0.29 ± 0.05 \(\mu\)M. This value is only threefold higher than the 80 \(\mu\)M MutL\(\alpha\) concentration used in the assays, implying that endonuclease inhibition is near stoichiometric. By contrast, the apparent \(K_i\) for MutL\(\alpha\) ATPase inhibition is 40-fold higher (8.2 ± 2.7 \(\mu\)M), a value comparable with that observed for Cd\(^{2+}\) inhibition of MutS\(\alpha\) ATPase at a similar protein concentration (23). Because Cd\(^{2+}\) inhibition of MutS\(\alpha\) ATPase is nonspecific in nature, this may be the case for MutL\(\alpha\) ATPase as well.

The curves shown in Fig. 2A are best fits to a Hill equation. Hill coefficients for both endonuclease and ATPase inhibition are less than 1 (0.43 and 0.33, respectively), indicating apparent anticooperativity. Cd\(^{2+}\) is expected to interact with other reaction components, including DNA, ATP, and secondary protein sites (23, 25, 26). Furthermore, because glutathione is present at millimolar concentrations in mammalian cells (27), all assays described here were done in the presence of the antioxidant, which is known to bind both cadmium and zinc (28). It, therefore, seems likely that the apparent anticooperative effects are the consequence of Cd\(^{2+}\) sequestration by secondary ligands.

The selective inhibition of MutL\(\alpha\) endonuclease suggested that Cd\(^{2+}\) may target this zinc-dependent active site. We have been unable to directly show cadmium association with MutL\(\alpha\) by ICP-MS after treatment of the protein with Cd\(^{2+}\) (17 \(\mu\)M MutL\(\alpha\), 50 \(\mu\)M CdCl\(_2\)) followed by gel filtration, indicating that MutL\(\alpha\) affinity for Cd\(^{2+}\) is substantially less than that for zinc. As an alternate approach, we asked whether exogenous Zn\(^{2+}\) would compete with the inhibitory effect of 2 \(\mu\)M Cd\(^{2+}\) on endonuclease function. In fact, cadmium inhibition is reversed by low Zn\(^{2+}\) concentrations, with the effect peaking at a Zn\(^{2+}\) concentration comparable with that of the 80 \(\mu\)M MutL\(\alpha\) concentration used in the assays (Fig. 2B). However and in contrast to the Zn\(^{2+}\) activation profile observed with TPEN-treated MutL\(\alpha\) in the absence of other metals (Fig. 1), higher Zn\(^{2+}\) concentrations are inhibitory (Fig. 2B). The experiments shown in Fig. 2 were done in the presence of 23 mM KCl, 0.38 mM ATP, and 0.5 mg/mL BSA, but similar results were obtained in 60 mM KCl in the absence of ATP and BSA (SI Appendix, Fig. S3). We think that the inhibitory effects of higher Zn\(^{2+}\) concentrations in these experiments are the likely consequence of a mixed metal effect similar to that shown in SI Appendix, Fig. S2C and discussed above.

Exogenous MutL\(\alpha\), but Not MutS\(\alpha\), Significantly Reverses MMR Inhibition in Cd\(^{2+}\)-Treated Nuclear Extract and in Extract Prepared from Cd\(^{2+}\)-Treated Cells. Cadmium has been shown to inhibit MMR in extracts of human cells, with repair reduced 80% when extract is pretreated with 50 \(\mu\)M Cd\(^{2+}\) (17). We have confirmed the presence of other metals (Fig. 1), higher Zn\(^{2+}\) concentrations are inhibitory (0.43 and 0.33, respectively), indicating apparent anticooperativity. Cd\(^{2+}\) is expected to interact with other reaction components, including DNA, ATP, and secondary protein sites (23, 25, 26). Furthermore, because glutathione is present at millimolar concentrations in mammalian cells (27), all assays described here were done in the presence of the antioxidant, which is known to bind both cadmium and zinc (28). It, therefore, seems likely that the apparent anticooperative effects are the consequence of Cd\(^{2+}\) sequestration by secondary ligands.

The selective inhibition of MutL\(\alpha\) endonuclease suggested that Cd\(^{2+}\) may target this zinc-dependent active site. We have been unable to directly show cadmium association with MutL\(\alpha\) by ICP-MS after treatment of the protein with Cd\(^{2+}\) (17 \(\mu\)M MutL\(\alpha\), 50 \(\mu\)M CdCl\(_2\)) followed by gel filtration, indicating that MutL\(\alpha\) affinity for Cd\(^{2+}\) is substantially less than that for zinc. As an alternate approach, we asked whether exogenous Zn\(^{2+}\) would compete with the inhibitory effect of 2 \(\mu\)M Cd\(^{2+}\) on endonuclease function. In fact, cadmium inhibition is reversed by low Zn\(^{2+}\) concentrations, with the effect peaking at a Zn\(^{2+}\) concentration comparable with that of the 80 \(\mu\)M MutL\(\alpha\) concentration used in the assays (Fig. 2B). However and in contrast to the Zn\(^{2+}\) activation profile observed with TPEN-treated MutL\(\alpha\) in the absence of other metals (Fig. 1), higher Zn\(^{2+}\) concentrations are inhibitory (Fig. 2B). The experiments shown in Fig. 2 were done in the presence of 23 mM KCl, 0.38 mM ATP, and 0.5 mg/mL BSA, but similar results were obtained in 60 mM KCl in the absence of ATP and BSA (SI Appendix, Fig. S3). We think that the inhibitory effects of higher Zn\(^{2+}\) concentrations in these experiments are the likely consequence of a mixed metal effect similar to that shown in SI Appendix, Fig. S2C and discussed above.

Exogenous MutL\(\alpha\), but Not MutS\(\alpha\), Significantly Reverses MMR Inhibition in Cd\(^{2+}\)-Treated Nuclear Extract and in Extract Prepared from Cd\(^{2+}\)-Treated Cells. Cadmium has been shown to inhibit MMR in extracts of human cells, with repair reduced 80% when extract is pretreated with 50 \(\mu\)M Cd\(^{2+}\) (17). We have confirmed the presence of other metals (Fig. 1), higher Zn\(^{2+}\) concentrations are inhibitory (0.43 and 0.33, respectively), indicating apparent anticooperativity. Cd\(^{2+}\) is expected to interact with other reaction components, including DNA, ATP, and secondary protein sites (23, 25, 26). Furthermore, because glutathione is present at millimolar concentrations in mammalian cells (27), all assays described here were done in the presence of the antioxidant, which is known to bind both cadmium and zinc (28). It, therefore, seems likely that the apparent anticooperative effects are the consequence of Cd\(^{2+}\) sequestration by secondary ligands.

The selective inhibition of MutL\(\alpha\) endonuclease suggested that Cd\(^{2+}\) may target this zinc-dependent active site. We have been unable to directly show cadmium association with MutL\(\alpha\) by ICP-MS after treatment of the protein with Cd\(^{2+}\) (17 \(\mu\)M MutL\(\alpha\), 50 \(\mu\)M CdCl\(_2\)) followed by gel filtration, indicating that MutL\(\alpha\) affinity for Cd\(^{2+}\) is substantially less than that for zinc. As an alternate approach, we asked whether exogenous Zn\(^{2+}\) would compete with the inhibitory effect of 2 \(\mu\)M Cd\(^{2+}\) on endonuclease function. In fact, cadmium inhibition is reversed by low Zn\(^{2+}\) concentrations, with the effect peaking at a Zn\(^{2+}\) concentration comparable with that of the 80 \(\mu\)M MutL\(\alpha\) concentration used in the assays (Fig. 2B). However and in contrast to the Zn\(^{2+}\) activation profile observed with TPEN-treated MutL\(\alpha\) in the absence of other metals (Fig. 1), higher Zn\(^{2+}\) concentrations are inhibitory (Fig. 2B). The experiments shown in Fig. 2 were done in the presence of 23 mM KCl, 0.38 mM ATP, and 0.5 mg/mL BSA, but similar results were obtained in 60 mM KCl in the absence of ATP and BSA (SI Appendix, Fig. S3). We think that the inhibitory effects of higher Zn\(^{2+}\) concentrations in these experiments are the likely consequence of a mixed metal effect similar to that shown in SI Appendix, Fig. S2C and discussed above.
this finding and have asked whether inhibition can be rescued by exogenous MutL or MutS. As shown in Fig. 3A, supplementation of untreated nuclear extract from 293T Lα cells (29) with 25 nM MutL or MutS has only a small effect on MMR activity. However, supplementation of Cd²⁺-treated extract with MutL results in significant restoration of repair, but addition of MutS does not, and extract activity when supplemented with both proteins is indistinguishable from that observed with MutL alone. Furthermore, rescue of the MMR defect in Cd²⁺-treated extract requires MutL endonuclease function, as endonuclease-defective E705K MutL does not suffice in this regard (Fig. 3).

Biological studies have shown that Cd²⁺ treatment inhibits mammalian MMR in vivo (19, 20), and we have found that MMR in extracts prepared from 293T Lα cells treated with 5 μM Cd²⁺ for 4 h is reduced about 80% relative to that of extracts prepared from untreated control cells (Fig. 4). As observed with Cd²⁺-treated extracts, the repair defect in extracts prepared from Cd²⁺-treated cells is significantly rescued by exogenous MutL but not by MutS. Western blot analysis indicates that the MSH6 subunit of MutS and the PMS2 subunit of MutL are both present in extracts prepared from cadmium-treated cells, although PMS2 levels may be modestly reduced after Cd²⁺ exposure (SI Appendix, Fig. S4).

Discussion

DQHA(X)₄E(X)₄E, ACR, and CPHGRP motifs of PMS2 (PMS1 in yeast) together with the C-terminal Cys of MLH1 comprise a Zn²⁺ binding site and define the endonuclease center of the MutL CTD (3, 6, 8, 10). Although initial estimates suggested presence of a single Zn²⁺ ion (8), crystallographic analysis of the yeast MutL CTD revealed presence of two bound Zn ions (10), and we have confirmed presence of two Zn equivalents in native human MutLα. Because E705K substitution within the DQHA(X)₄E(X)₄E motif, which inactivates endonuclease function, results in loss of approximately one Zn equivalent (Table 1), one of the two bound metals presumably resides within the CTD endonuclease active site. Additional evidence for Zn²⁺ involvement in MutLα function is provided by the fact that TPEN chelation of the metal reduces intrinsic endonuclease activity by 90%, which can be partially reversed by exogenous Zn²⁺ (Fig. 1).

MutL endonuclease is subject to constitutive activation in the absence of a mismatch, and other repair proteins provided that Mn²⁺ is substituted for Mg²⁺ (3, 4), but the basis of this effect has been unclear. We show here that Mn²⁺-dependent activation can be suppressed by low-micromolar Zn²⁺ concentrations (SI Appendix, Fig. S2C). This suggests that activation by millimolar Mn²⁺ is the result of substitution for one or both endogenous zinc ions and that this effect can be reversed by low concentrations of exogenous Zn²⁺. The endonuclease motifs described above are found in many but not all bacterial MutL proteins (3, 30), where they are also believed to comprise Zn²⁺ coordination sites (32), which is consistent with our findings based on functional assays.

Cadmium mutagenesis in yeast is largely a consequence of the selective inhibition of MMR (17), and the mutagenic action of Cd²⁺ in this organism is efficiently suppressed by Zn²⁺ (22). Although cadmium responses in higher organisms are likely to be more involved due, for example, to tissue differences and sequestration of the metal by inducible metallothionein (33), similar genotoxic cadmium effects have been documented in mammalian cells. Cd²⁺ treatment of cultured human cells abolishes the MMR-dependent checkpoint response to DNA methylator damage, an effect that is also reversed by Zn (19), and injection of mice with CdCl₂ results in testicular microsatellite instability (20). Such genotoxic effects presumably contribute to cadmium’s action as a carcinogen (13, 15). Although Cd²⁺ inhibits mismatch recognition and ATP hydrolysis by MutSα (21, 22), these effects seem to be non-specific in nature, involving binding of about 100 Cd equivalents per MSH2-MSH6 heterodimer (23).

The results described here show that Cd²⁺ selectively targets the endonuclease function of MutLα and suggest that this effect contributes significantly to selective inhibition of MMR by the metal. We have found that Cd²⁺ inhibits MutLα endonuclease with a submicromolar Kᵢ and that inhibition is reversed by Zn²⁺ (Fig. 2), suggesting that the two metals compete for the same site(s). This idea is consistent with structural study of the A. aeolicus MutL...
CTD crystallized in the presence of Cd\(^{2+}\) (30). Of the three Cd\(^{2+}\) ions found in the structure, two are coordinated by DOQA(X\(_2\))E(X\(_2\))E, ACR, and CPHGRP motifs in a manner identical to the two Zn atoms in the yeast MutL CTD (10).

Perhaps the most compelling argument that selective MutL\(\alpha\) inhibition contributes to Cd\(^{2+}\) mutagenesis is the finding that exogenous MutL\(\alpha\) significantly reverses MMR inhibition in Cd\(^{2+}\)-treated nuclear extract and partially rescues the MMR defect in extracts prepared from Cd\(^{2+}\)-treated cells (Figs. 3 and 4). MutS\(\alpha\) is without significant effect when added to such extracts, and MMR rescue by exogenous MutL\(\alpha\) depends on integrity of the endonuclease active site. However, MMR rescue by exogenous MutL\(\alpha\) in these extract experiments is incomplete. This may indicate that cadmium inhibition of other MMR activities contributes to pathway disruption, although MutS\(\alpha\) seems an unlikely target, because MutS\(\alpha\) and MutL\(\alpha\) together are no more effective with respect to MMR inhibition than MutL\(\alpha\) alone (Fig. 3A). However, although it seems likely that the bulk of the cadmium in treated extracts is bound to cellular components, the availability of free or exchangeable Cd\(^{2+}\) may be sufficient to inhibit the added MutL\(\alpha\) to an extent that precludes complete reversal of the MMR defect in treated extracts as judged by biochemical assay.

Materials and Methods
DNA Substrates, Proteins, and Nuclear Extracts. Phagemid pGEM-3Zf(-) (Promega) was modified by site-directed mutagenesis at positions 3072 and 3073 to introduce a unique BbvCI site at position 3070 and designed as pGB31. This DNA was further modified by standard methods to yield 3.2-kb pGB31-MR1, which contains a 33-residue insert (S-AGTCGCTAGAAGCTTGACTGAGCTAGAAATTGCG) in the top strand between positions 56 and 57 of pGB31. Replicative form pGB31-MR1 DNA was isolated as previously described (34); 6.4-kb G-T f1 heteroduplex DNAs for MMR assays were prepared using phages f1MR59 and f1MR60 (strand break 141 bp 3' to the mismatch) (35).

Recombinant human MutS\(\alpha\) and MutL\(\alpha\) with and without Y705K substitution in the PMS2 endonuclease active site (3) were isolated from baculovirus-infected SF9 cells as described (36), except that EDTA was replaced with 1 mM glutathione, 1 mM MnSO\(_4\), and CdCl\(_2\) as indicated with 25 nM MutS\(\alpha\) or 25 nM MutL\(\alpha\); 3' G-T heteroduplex repair is normalized relative to that observed with unsupplemented extracts from untreated cells. Values shown are the mean of three determinations (± SD). Significant rescue of the repair defect (asterisks) is only observed on supplementation with MutL\(\alpha\) (P = 6.5 × 10\(^{-7}\)) or MutL\(\alpha\) + MutS\(\alpha\) (P = 6.6 × 10\(^{-7}\)).

Fig. 4. MutL\(\alpha\) partially rescues the MMR defect in extracts prepared from Cd\(^{2+}\)-treated cells. Nuclear extracts were prepared from 293T L\(\alpha\) cells, which were untreated (red bars) or treated for 4 h with 5 μM CdCl\(_2\) (blue bars) before harvest (Materials and Methods). Extracts (50 μg) were supplemented as indicated with 25 nM MutS\(\alpha\) and/or 25 nM MutL\(\alpha\); 3' G-T heteroduplex repair is normalized relative to that observed with unsupplemented extract from untreated cells. Values shown are the mean of three determinations (± SD). Significant rescue of the repair defect (asterisks) is only observed on supplementation with MutL\(\alpha\) (P = 6.5 × 10\(^{-7}\)) or MutL\(\alpha\) + MutS\(\alpha\) (P = 6.6 × 10\(^{-7}\)).

The ability of Zn\(^{2+}\) to reverse Cd\(^{2+}\) inhibition was tested by a similar procedure, except that reaction mixtures were supplemented with 2 μM CdCl\(_2\) and ZnCl\(_2\) as indicated with 25 nM MutL\(\alpha\) and E705K substitution in the PMS2 endonuclease active site (3) were isolated from baculovirus-infected SF9 cells as described (36), except that EDTA was replaced with 1 mM glutathione, 1 mM MnSO\(_4\), and CdCl\(_2\) as indicated with 25 nM MutS\(\alpha\) or 25 nM MutL\(\alpha\); 3' G-T heteroduplex repair is normalized relative to that observed with unsupplemented extract from untreated cells. Values shown are the mean of three determinations (± SD). Significant rescue of the repair defect (asterisks) is only observed on supplementation with MutL\(\alpha\) (P = 6.5 × 10\(^{-7}\)) or MutL\(\alpha\) + MutS\(\alpha\) (P = 6.6 × 10\(^{-7}\)).

Materials and Methods
DNA Substrates, Proteins, and Nuclear Extracts. Phagemid pGEM-3Zf(-) (Promega) was modified by site-directed mutagenesis at positions 3072 and 3073 to introduce a unique BbvCI site at position 3070 and designed as pGB31. This DNA was further modified by standard methods to yield 3.2-kb pGB31-MR1, which contains a 33-residue insert (S-AGTCGCTAGAAGCTTGACTGAGCTAGAAATTGCG) in the top strand between positions 56 and 57 of pGB31. Replicative form pGB31-MR1 DNA was isolated as previously described (34); 6.4-kb G-T f1 heteroduplex DNAs for MMR assays were prepared using phages f1MR59 and f1MR60 (strand break 141 bp 3' to the mismatch) (35).

Recombinant human MutS\(\alpha\) and MutL\(\alpha\) with and without Y705K substitution in the PMS2 endonuclease active site (3) were isolated from baculovirus-infected SF9 cells as described (36), except that EDTA was replaced with 1 mM glutathione, 1 mM MnSO\(_4\), and CdCl\(_2\) as indicated with 25 nM MutS\(\alpha\) or 25 nM MutL\(\alpha\); 3' G-T heteroduplex repair is normalized relative to that observed with unsupplemented extract from untreated cells. Values shown are the mean of three determinations (± SD). Significant rescue of the repair defect (asterisks) is only observed on supplementation with MutL\(\alpha\) (P = 6.5 × 10\(^{-7}\)) or MutL\(\alpha\) + MutS\(\alpha\) (P = 6.6 × 10\(^{-7}\)).

The ability of Zn\(^{2+}\) to reverse Cd\(^{2+}\) inhibition was tested by a similar procedure, except that reaction mixtures were supplemented with 2 μM CdCl\(_2\) and ZnCl\(_2\) as indicated with 25 nM MutL\(\alpha\) and E705K substitution in the PMS2 endonuclease active site (3) were isolated from baculovirus-infected SF9 cells as described (36), except that EDTA was replaced with 1 mM glutathione, 1 mM MnSO\(_4\), and CdCl\(_2\) as indicated with 25 nM MutS\(\alpha\) or 25 nM MutL\(\alpha\); 3' G-T heteroduplex repair is normalized relative to that observed with unsupplemented extract from untreated cells. Values shown are the mean of three determinations (± SD). Significant rescue of the repair defect (asterisks) is only observed on supplementation with MutL\(\alpha\) (P = 6.5 × 10\(^{-7}\)) or MutL\(\alpha\) + MutS\(\alpha\) (P = 6.6 × 10\(^{-7}\)).
Metal activation of untreated or TPN-treated MutLα was determined in a similar manner except that MnSO₄ and BSA were omitted, and 10 μL reactions contained KCl and ATP as indicated, 50 ng (2.4 nM) pG831-MR1 supercoiled DNA, and 0.5 μM MutLα. Trace metal-grade ZnSO₄, ZnCl₂, MnCl₂, or MgCl₂ was present as specified, metal-free microfuge tubes were used, and incubation was at 37 °C for 110 min. For ATPase determination, 7 μL of 20 mM Hepes-KOH, pH 7.5, 46 mM KCl, 2 mM glutathione, 35 ng pG831-MR1 (1.2 nM final) supercoiled DNA, 2 mM trace metal-grade MnCl₂, 1 mg/mL BSA, 5% (vol/vol) glycerol, 160 mM MutLα, and 0-2 mM GdCl₃, were prewarmed to 37 °C for 2 min. Hydrolysis was initiated by addition of 7 μL 1 mM Zn(II) (3.5 Cilmomol) in 20 mM Hepes-KOH, pH 7.5, and 5% (vol/vol) glycerol; 2-μL samples were removed as a function of time, reactions were quenched, and hydrolysis was determined as described (41).

Statistical Methods. Errors shown are ±1 SD. P values were calculated by two-tailed Student t test using Mathematica software (Wolfram).

ACKNOWLEDGMENTS. HEK 293T cells were a gift from Dr. Josef Jiricny. We thank Dr. Terrance Oas for assistance with statistical analysis. We also acknowledge the Duke University Mass Spectrometry Characterization Core Facility for help with ICP-MS analysis. This study was supported, in part, by NIH Grant GM045190 (to P.M.). S.M.S. was supported by American Cancer Society Lakeshore Division Postdoctoral Fellowship PF-13:392-01-DMC. P.M. is an Investigator of the Howard Hughes Medical Institute.