Intermittent preventive antimalarial treatment for children with anaemia (Review)

Athuman M, Kabanywanyi AM, Rohwer AC

www.cochranelibrary.com
TABLE OF CONTENTS

- **HEADER** .. 1
- **ABSTRACT** ... 1
- **PLAIN LANGUAGE SUMMARY** 2
- **SUMMARY OF FINDINGS FOR THE MAIN COMPARISON** 3
- **BACKGROUND** .. 5
- **OBJECTIVES** ... 6
- **METHODS** ... 6
- **RESULTS** .. 9
 - Figure 1. ... 9
 - Figure 2. ... 12
 - Figure 3. ... 13
- **DISCUSSION** .. 15
- **AUTHORS' CONCLUSIONS** 17
- **ACKNOWLEDGEMENTS** 17
- **REFERENCES** .. 17
- **CHARACTERISTICS OF STUDIES** 20
- **DATA AND ANALYSES** 36
 - Analysis 1.1. Comparison 1 IPT versus placebo, Outcome 1 All-cause mortality plus hospital admissions at 6 months. .. 37
 - Analysis 1.2. Comparison 1 IPT versus placebo, Outcome 2 Children with anaemia at 12 weeks. .. 38
 - Analysis 1.3. Comparison 1 IPT versus placebo, Outcome 3 Mean change in Hb (baseline to 12 weeks). .. 39
 - Analysis 1.4. Comparison 1 IPT versus placebo, Outcome 4 Mean Hb at 12 weeks. .. 40
 - Analysis 2.1. Comparison 2 IPT in high versus low endemic areas, Outcome 1 All cause mortality plus hospital admissions at 6 months. .. 41
 - Analysis 2.2. Comparison 2 IPT in high versus low endemic areas, Outcome 2 Children with anaemia at 12 weeks. .. 42
 - Analysis 2.3. Comparison 2 IPT in high versus low endemic areas, Outcome 3 Mean change in Hb (baseline to 12 weeks). .. 43
 - Analysis 2.4. Comparison 2 IPT in high versus low endemic areas, Outcome 4 Mean Hb at 12 weeks. .. 44
 - Analysis 3.1. Comparison 3 IPT plus Vitamin A and C versus IPT in the presence of iron, Outcome 1 Children with anaemia at 12 weeks. .. 45
 - Analysis 3.2. Comparison 3 IPT plus Vitamin A and C versus IPT in the presence of iron, Outcome 2 Mean change in Hb (baseline to 12 weeks). .. 46
 - Analysis 3.3. Comparison 3 IPT plus Vitamin A and C versus IPT in the presence of iron, Outcome 3 Mean Hb at 12 weeks. .. 46
- **ADDITIONAL TABLES** 46
- **APPENDICES** ... 50
- **CONTRIBUTIONS OF AUTHORS** 51
- **DECLARATIONS OF INTEREST** 51
- **SOURCES OF SUPPORT** 52
- **DIFFERENCES BETWEEN PROTOCOL AND REVIEW** 52
- **INDEX TERMS** ... 53
ABSTRACT

Background

Anaemia is a global public health problem. Children under five years of age living in developing countries (mostly Africa and South-East Asia) are highly affected. Although the causes for anaemia are multifactorial, malaria has been linked to anaemia in children living in malaria-endemic areas. Administering intermittent preventive antimalarial treatment (IPT) to children might reduce anaemia, since it could protect children from new Plasmodium parasite infection (the parasites that cause malaria) and allow their haemoglobin levels to recover.

Objectives

To assess the effect of IPT for children with anaemia living in malaria-endemic areas.

Search methods

We searched the Cochrane Infectious Diseases Group Specialized Register, Cochrane Central of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; and LILACS. We also searched the World Health Organization (WHO) International Clinical Trial Registry Platform and metaRegister of Controlled Trials (mRCT) for ongoing trials up to 4 December 2014.

Selection criteria

Randomized controlled trials (RCTs) evaluating the effect of IPT on children with anaemia.

Data collection and analysis

Two review authors independently extracted data and assessed risk of bias. We analysed data by conducting meta-analyses, stratifying data according to whether participants received iron supplements or not. We used GRADE to assess the quality of evidence.
Main results

Six trials with 3847 participants met our inclusion criteria. Trials were conducted in areas of low malaria endemicity (three trials), and moderate to high endemicity (three trials). Four trials were in areas of seasonal malaria transmission. Iron was given to all children in two trials, and evaluated in a factorial design in a further two trials. IPT for children with anaemia probably has little or no effect on the proportion anaemic at 12 weeks follow-up (four trials, 2237 participants, (moderate quality evidence)).

IPT in anaemic children probably increases the mean change in haemoglobin levels from baseline to follow-up at 12 weeks on average by 0.32 g/dL (MD 0.32, 95% CI 0.19 to 0.45; four trials, 1672 participants, moderate quality evidence); and may improve haemoglobin levels at 12 weeks (MD 0.35, 95% CI 0.06 to 0.64; four trials, 1672 participants, low quality evidence). For both of these outcomes, subgroup analysis did not demonstrate a difference between children receiving iron and those that did not.

IPT for children with anaemia probably has little or no effect on mortality or hospital admissions at six months (three trials, 3160 participants moderate quality evidence). Subgroup analysis did not show a difference between those children receiving iron supplements and those that did not.

Authors’ conclusions

Trials did show a small effect on average haemoglobin levels but this did not appear to translate into an effect on mortality and hospital admissions. Three of the six trials were conducted in low endemicity areas where transmission is low and thus any protective effect is likely to be modest.

Plain language summary

Antimalarial drugs as a treatment of anaemia in children living in malaria-endemic areas.

Children living in malaria areas may develop severe anaemia, often caused by malaria infection, and this can cause death if not treated properly. Intermittent preventive treatment (IPT) is a course of malaria treatment given regularly to these children in order to prevent infection and malaria illness. It has been suggested that IPT could be used to treat children with anaemia in these areas. We aimed to find all the studies looking at treating anaemic children with IPT in order to see what the overall effect is. We examined the evidence available up to 4 December 2014.

We included six trials in this review, with a total number of 3847 participants. In all the trials, one group received IPT and the control group received placebo. Three trials were done in low malaria endemicity areas and the other three in high endemicity areas. In some trials, iron supplements were also given to children, which is also a treatment for anaemia, and we took this into consideration when analysing the data.

Our results did not find that the number of children who died or were admitted to hospital was lower in the group receiving IPT, irrespective of whether they received iron (moderate quality evidence); and there was no difference in the number of children with anaemia at the end of follow-up (moderate quality evidence). Average haemoglobin levels were higher in the IPT group compared to the placebo group, but the effect was modest (low quality evidence).

Although our results show that there are small benefits in haemoglobin levels when treating anaemic children with IPT, we did not detect an effect on death or hospital admissions. However, three of the six included trials were conducted in low endemicity areas where malaria transmission is low and thus any protective effect is likely to be modest.
Summary of Findings for the Main Comparison

Intermittent preventive treatment compared to placebo for children with anaemia

Patient or population: Children with anaemia
Settings: Malaria-endemic areas
Intervention: IPT (± iron and folic acid)
Comparison: Placebo (± iron and folic acid)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (trials)</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>IPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death or hospital admission</td>
<td>34 per 1000 (24 to 38)</td>
<td>31 per 1000</td>
<td>RR 0.9 (0.71 to 1.13)</td>
<td>3160 (3 trials)</td>
</tr>
<tr>
<td>Children with anaemia (Hb < 11 g/dL)</td>
<td>579 per 1000 (510 to 620)</td>
<td>561 per 1000</td>
<td>RR 0.97 (0.88 to 1.07)</td>
<td>2237 (4 trials)</td>
</tr>
<tr>
<td>Mean change in Hb from baseline</td>
<td>The mean change ranged across control groups from 0.32 to 5.4 g/dL</td>
<td>The mean change in the intervention groups was 0.32 g/dL higher (0.19 to 0.45 higher)</td>
<td>-</td>
<td>1672 (4 trials)</td>
</tr>
<tr>
<td>Mean Hb</td>
<td>The mean Hb concentration ranged across control groups from 9.91 to 10.7 g/dL</td>
<td>The mean Hb concentration in the intervention groups was 0.35 g/dL higher (0.06 to 0.64 higher)</td>
<td>-</td>
<td>1672 (4 trials)</td>
</tr>
</tbody>
</table>

* The basis for the **assumed risk** is the median control group risk across trials. The **corresponding risk** (and its 95% CI) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; IPT: intermittent preventive treatment; AL: artemether lumefantrine.
GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

1. No serious risk of bias: The largest trial was at low risk of bias. The two smaller trials were at high risk of attrition bias, but exclusion of these trials does not change the result.
2. No serious inconsistency: Statistical heterogeneity was low.
3. No serious indirectness: The three trials were conducted in the Gambia, Kenya and Malawi, one trial gave IPT (AL monthly) to children discharged from hospital following severe malarial anaemia, and two trials gave IPT (SP monthly) to anaemic children attending hospital, outpatient clinics or recruited in the community. There was no significant result for subgroup differences between areas with high versus areas with low endemicity.
4. Downgraded by 1 for serious imprecision: The 95% CI around the absolute risk difference is very narrow and excludes clinically important effects. However, much larger trials would be necessary to fully exclude small benefits with IPT.
5. Downgraded by 1 for serious risk of bias: high risk of attrition bias for Bojang 2010 GMB and Desai 2003 KEN.
6. No serious indirectness: All the trials gave IPT (SP) monthly to anaemic children attending hospital, outpatient clinics or recruited in the community. There was no significant result for subgroup differences between areas with high versus areas with low endemicity.
7. No serious imprecision: No effect was seen and the meta-analysis is adequately powered to detect an effect.
8. No serious imprecision. A small effect was seen although this disappears when we removed trials at high risk of bias from the analysis.
9. Downgraded by 1 for serious risk of bias: High risk for attrition bias for Bojang 2010 GMB and Desai 2003 KEN.
10. No serious indirectness: Three trials gave IPT (SP) monthly and one trial gave CQ weekly to anaemic children attending hospital, outpatient clinics or recruited in the community. There was no significant result for subgroup differences between areas with high versus areas with low endemicity.
11. Downgraded for serious inconsistency: Heterogeneity (I^2 statistic = 76%; Chi^2 statistic = 16.93; $P = 0.002$) is present. One trial is an outlier (Desai 2003 KEN).
Description of the condition

Anaemia is a public health problem that affects people worldwide. Between 1993 and 2005, an estimated 1.62 billion people worldwide had anaemia, which corresponded to 24.8% of the world's population (WHO 2008). The reported global prevalence was 47.4% in children aged under five. Children in Africa and South-East Asia carried the highest reported burden of anaemia: 67.6% and 65.5% respectively (WHO 2008). Causes of anaemia are multifactorial and include poor nutritional status, micronutrient deficiencies (especially iron deficiency, but also vitamin A, vitamin B and folic acid), intestinal helminth infection, HIV infection and haemoglobinopathies (Calis 2008). However, malaria is probably the most important cause of anaemia in malaria-endemic countries (Antony 2008; Balarajan 2011; Crawley 2004). Anaemia is also more common in children from low-income and illiterate families, compared to children coming from wealthier households (Balarajan 2011).

Malaria causes anaemia mainly by destruction of red blood cells (haemolysis) (Looresuwan 1987) but also by causing an increase in the splenic pool of red blood cells and decreased production of red blood cells (Crawley 2004; Phillips 1992). Acute loss of red blood cells may lead to severe anaemia. Chronic anaemia can slow growth and result in learning difficulties and behavioural changes in affected children (Grantham-McGregor 2001; Lozoff 1991).

The symptoms of anaemia vary according to the severity, the age of the affected person, and whether the anaemia is acute or chronic. People with anaemia report fatigue, shortness of breath and palpitations. Clinical signs include paleness of the mucosal linings, such as the tongue, conjunctiva, palm and nail bed (Kalter 1997). Although palm pallor is commonly used for classification of disease in children (Meremikwu 2009), diagnosis of anaemia is based on laboratory tests. The World Health Organization (WHO) has defined anaemia in pre-school aged children as a haemoglobin (Hb) concentration of less than 11 g/dL (WHO 2008) and severe anaemia, often a complication of severe malaria, as a Hb concentration of less than 5 g/dL (WHO 2000). In a study assessing the short and long term outcome of severe anaemia in Malawian children, children hospitalized and treated for severe anaemia had a significantly higher mortality rate (in-hospital and post-discharge) than children who were seen in hospital for other conditions and those from the community (Phiri 2008). Furthermore, researchers estimate that severe anaemia probably accounts for more than half of all childhood deaths from malaria in Africa (Crawley 2004). Children who are affected may need to be admitted to hospital and may need blood transfusions (Obono 2007).

A Cochrane Review has shown that long lasting insecticide-treated net (LLIN) use was highly effective in reducing childhood mortality and morbidity from malaria and had a positive effect on anaemia in children (Lengeler 2009). These vector control strategies are a core component of the malaria control programmes globally and especially in Africa (WHO 2012a). Other measures to prevent anaemia include prompt and effective treatment of malaria infections, intestinal helminths and human immunodeficiency virus (HIV), increased use of measures to prevent mother-to-child transmission of HIV and provision of micronutrient supplementation (Balarajan 2011; Crawley 2004).

Description of the intervention

Intermittent preventive treatment (IPT) is the administration of a full course of antimalarial treatment to a population at risk of malaria during a specific time period, regardless of whether or not they are known to be infected (Greenwood 2006). IPT policies were first implemented in pregnant women (IPTp) living in areas with a high rate of seasonal malaria transmission. This treatment consisted of a single dose of sulphadoxine/pyrimethamine (SP) given two or three times during the pregnancy, and was introduced as an alternative to chemoprophylaxis with chloroquine (CQ), due to the increasing CQ resistance and unpopularity of the drug (Greenwood 2010). The WHO also recommends that IPT in infants (IPTi) up to the age of 12 months, should be administered together with the second and third diphtheria-pertussis-tetanus (DPT) and measles vaccination of infants in areas that have a moderate to high transmission rate of malaria (WHO 2010; WHO 2012a).

IPT was first made available for children (IPTc) after it had been shown that most children in highly seasonal malaria areas suffer from malaria and its related complications during the rainy season (Dicko 2011). Two recent systematic reviews have demonstrated that IPTc reduces episodes of clinical malaria in areas with a high rate of seasonal malaria transmission (Meremikwu 2012; Wilson 2011). Currently, the WHO recommends seasonal malarial chemoprevention (SMC) or IPTc, in seasonal malarial areas during the transmission season (WHO 2012b). This consists of a complete treatment course of SP and amodiaquine (AQ), given to children aged between three to 59 months, at monthly intervals, during the high risk period of malaria transmission. Children may receive up to four doses of this antimalarial treatment during the malaria transmission season with the aim of maintaining therapeutic drug levels during the period of high transmission. This strategy excludes areas with SP resistance outbreak (WHO 2013).

How the intervention might work

Children with severe anaemia, for whom routine management like blood transfusions and hematinsics is insufficient to improve the Hb level, might benefit from IPT, since it has been shown to augment the effect of hematinsics on Hb recovery when administered together in anaemic children (Akech 2008; Phiri 2011; Verhoef 2002). In addition, IPT enables hematological recovery...
by preventing and treating new malaria infections (White 2004). Combining the effect of IPT, LLIN, and other programs like de-worming and iron supplementation might add significant benefit in reducing the burden of anaemia in pre-school aged children. Iron supplementation is often recommended for children with anaemia, although there are concerns about an association between iron supplementation and increased malaria morbidity and mortality (WHO 2006). However, a recent Cochrane Review concluded that there is high quality evidence that iron supplementation, even when given together with antimalarial treatment, does not increase the risk of clinical malaria morbidity or mortality (Okebe 2011).

A Cochrane Review reported that IPT, when given to treat malaria, also increased Hb levels of children (Meremikwu 2012). They also concluded that there is moderate quality evidence that children given IPT were less likely to have moderately severe anaemia at follow-up (Hb < 8 g/dL) compared to placebo (Risk ratio (RR) 0.71, 95% confidence interval (CI) 0.52 to 0.98).

Why it is important to do this review

The prevalence of anaemia in pre-school aged children remains high, especially in children living in Africa and South-East Asia. The Cochrane Review of IPT in areas with seasonal transmission of malaria showed promising effects on preventing and treating anaemia in children (Meremikwu 2012). Although the review included all pre-school aged children living in malaria-endemic regions, it did not examine the effects of IPT on children diagnosed with anaemia. Since the two systematic reviews on IPT for malaria (Meremikwu 2012; Wilson 2011) have conflicting results on the effect of IPT on anaemia, a formal assessment of existing studies in a systematic review can provide physicians, policy makers and researchers with reliable evidence on the use of IPT in anaemic children living in malaria-endemic areas with a high seasonal transmission rate.

OBJECTIVES

To assess the effect of intermittent preventive antimalarial treatment for children with anaemia living in malaria-endemic areas.

METHODS

Criteria for considering studies for this review

Types of studies

Randomized controlled trials (RCTs) and cluster-RCTs.

Types of participants

Children with anaemia (Hb < 11 g/dL; WHO 2008) living in malaria-endemic areas.

Types of interventions

Intervention

IPT for malaria

Control

No IPT for malaria

Co-interventions, such as hematinics or LLINs, should be identical in both intervention and control groups.

Types of outcome measures

Primary outcomes

- All-cause mortality and hospital admission

Secondary outcomes

- Anaemia at follow-up (Hb < 11g/dL)
- Mean change in Hb (g/dL) from baseline to follow-up
- Mean Hb at follow-up (g/dL)

Search methods for identification of studies

We attempted to identify all relevant studies regardless of the language and publication status (published, unpublished, in press and ongoing).

Electronic searches

We searched the following databases up to 4 December 2014 using the search terms and strategy described in Appendix 1: Cochrane Infectious Diseases Group Specialized Register, Cochrane Central of Controlled Trials (CENTRAL), published in The Cochrane Library (2014, Issue 11); MEDLINE; EMBASE; and LILACS. We also searched the WHO International Clinical Trial Registry Platform and metaRegister of Controlled Trials (mRCT) for ongoing trials using “anaemia”, “children”, “intermittent preventive treatment” and “malaria” as search terms.
Searching other resources

Reference lists

We checked the reference lists of all included studies for relevant trials.

Data collection and analysis

Selection of studies

Two review authors (MA and AR) independently screened the results of the literature search for potentially eligible trials. We retrieved the full text articles of relevant studies and independently assessed eligibility using an eligibility form. We contacted trial authors in cases of missing or unclear information. We resolved discrepancies through discussion or alternatively through consulting the third review author, AMK. We ensured that multiple publications of the same trial were only included once. We listed excluded studies, together with the reasons for exclusion, in table format.

Data extraction and management

Two review authors (MA and AR) extracted data independently using pre-piloted, electronic data extraction forms. We resolved any disagreements through discussion. We contacted the trial authors in case of missing data.

For each included trial, we extracted data on the trial design, participants, intervention, control intervention, outcomes (included outcomes, measurement of outcomes) and results. For RCTs, we extracted the number of participants randomized to each treatment arm and the number of participants monitored for each outcome of interest. For dichotomous data, we extracted the number of events in each of the treatment arms. For continuous data, we extracted the arithmetic mean, standard deviations (SDs) and the number of participants in each group. We reported the measure of effect for each outcome, RRs or mean differences, with 95% CIs.

Sequence generation

We regarded a trial as having: low risk of bias if the sequence generation was truly random (for example, computer-generated table of random numbers, tossing a coin); high risk of bias if sequence generation contained a non-random component (for example, alternate randomization, randomization by birth date); or unclear risk of bias if the trial authors did not clearly describe the randomization process.

Allocation concealment

We regarded trials as having: low risk of selection bias if allocation was truly concealed (for example, central allocation of participants, use of sequentially numbered, opaque, sealed envelopes); high risk of bias if the allocation process was not concealed (for example, open randomization, unsealed or non-opaque envelopes); or unclear risk of bias if the trial authors did not describe the process of allocation concealment in sufficient detail.

Blinding of participants and personnel

We determined whether blinding was present, who was blinded and the methods used to blind trial participants and personnel. We regarded a trial as having: low risk of bias if blinding was present, or if the absence of blinding was unlikely to affect the outcomes; high risk of bias if blinding was absent and likely to affect the results; or an unclear risk of bias if blinding was not clearly described.

Blinding of outcome assessors

We described whether blinding of outcome assessors was present and how they were blinded. We regarded a trial as having: low risk of detection bias if they were blind to knowledge about which intervention the participants received; high risk of bias if blinding was absent; and unclear risk if blinding was not clearly described.

Incomplete outcome data

We regarded trials as having: low risk of attrition bias if there was no missing data or if missing data was balanced across groups and attrition rates were less that 20%; high risk of bias if there was missing data (attrition rate higher than 20%) or if missing data was more prevalent in one of the groups; or unclear risk of bias if trial authors did not clearly state whether outcome data was missing.

Selective outcome reporting

We regarded a trial as having low risk of reporting bias if it was evident that all pre-specified outcomes were reported on; high risk of bias if it was evident that not all pre-specified outcomes were reported on; or unclear risk of bias if it was unclear whether all outcomes have been reported on.
Other bias
We described any important feature of included trials that could have affected the result.

Measures of treatment effect
We compared dichotomous data using RRs. For continuous data summarized by arithmetic means and SDs, we presented mean difference values. We presented all results with their associated 95% CIs.

Unit of analysis issues
We included two trials with a two-by-two factorial trial design, that is containing four treatment groups (IPT plus iron; iron only; IPT only; placebo). We included all four groups in the meta-analyses, by making use of subgroups (IPT plus iron versus IPT without iron).

Dealing with missing data
We applied available case analysis to continuous outcomes and only included data on the known results. The denominator was the total number of participants who had data recorded for the specific outcome.

For dichotomous outcomes, we performed analyses on an intention-to-treat basis. We included all participants randomized to each group in the analyses and analysed participants in the group to which they were randomized.

We calculated missing SDs from 95% CIs, if available. Where 95% CIs were not reported with the mean Hb level at follow-up, we borrowed the SDs reported for the mean Hb levels at baseline (Higgins 2011). Where mean values were not reported for the outcome (mean change in Hb from baseline to follow-up) we calculated means by subtracting the mean value at baseline from the mean value at follow-up. We imputed the corresponding SD by calculating a correlation coefficient from a reported mean and SD (mean change in Hb from baseline to follow-up) in Rohner 2010, after consultation with a statistician. This study examined the effect of IPT on malaria and anaemia in children, but included both anaemic and non-anaemic children and thus we excluded it from this review.

Assessment of heterogeneity
We inspected forest plots for overlapping CIs and assessed statistical heterogeneity in each meta-analysis using the I² and Chi² statistics. We regarded heterogeneity as moderate if I² statistic values were between 30% and 60%; substantial if they were between 50% and 90%; and considerable if they were between 75% and 100%. We regarded a P value of 0.10 or less indicative of statistically significant heterogeneity.

Assessment of reporting biases
We did not formally assess reporting biases, since we only included six trials in the review.

Data synthesis
We used RevMan 2014 for data analysis. If considerable heterogeneity was present, we combined data using random-effects meta-analysis and reported an average treatment effect, since this was considered to be clinically meaningful. We presented results using forest plots.

Evidence quality
We assessed the quality of evidence using the GRADE approach (Guyatt 2011). We rated each outcome as either high (we are very confident that the true effect lies close to that of the estimate of the effect); moderate (we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect); low (our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect); or very low quality of evidence (we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of the effect) (Balshem 2011). RCTs are regarded as high quality evidence but can be downgraded within the following five categories: study limitations, imprecision, inconsistency, indirectness and publication bias. Studies can also be upgraded if there is a large effect, a dose-response effect, or if all plausible residual confounding would reduce a demonstrated effect or would suggest a spurious effect if no effect was observed (Balshem 2011). We summarized our findings in a 'Summary of findings' table.

Subgroup analysis and investigation of heterogeneity
We performed the following subgroup analyses:
- Additional interventions to treat anaemia (such as hematinics or folic acid)
- Hospital recruitment versus community recruitment

We performed subgroup analyses for the following outcomes:
- All-cause mortality and hospital admissions at six months follow-up
- Anaemia at 12 weeks follow-up
- Mean change in Hb from baseline to follow-up (12 weeks)
- Mean Hb at follow-up (12 weeks)

We assessed differences between subgroups using the Chi² test with a P value of 0.05 or less indicating statistically significant differences between subgroups. We documented the drugs used for IPT in the footnotes for each forest plot. There was no evidence of heterogeneity by drug type, which might be anticipated with emerging sulfadoxine-
pyrimethamine (SP) resistance, so we did not subgroup by drug type.

Sensitivity analysis
Due to the limited amount of included trials, we did not perform sensitivity analysis.

RESULTS

Description of studies
See Table 1: Characteristics of included studies; Characteristics of excluded studies.

Results of the search
Our search yielded 88 records. We excluded 74 studies after screening abstracts and a further eight studies after assessing eligibility of full texts. We included six RCTs (3847 participants). See Figure 1.
Included studies

Trial designs

All included trials were individually RCTs. Two trials with a factorial design (Desai 2003 KEN; Verhoef 2002 KEN) had four trial arms. One trial had three arms (Tomashek 2001 TNZ) and the remaining three trials had two trial arms. Most of the included RCTs had an intervention period of approximately 12 weeks, at which time outcomes were assessed, and some trials had an extended follow-up period of up to one year post enrolment.

Location

All included trials were conducted in malaria-endemic areas. Three trials were conducted in low endemicity areas: two in The Gambia (Bojang 2010 GMB; Cox 2013 GMB) and one in eastern Kenya (Verhoef 2002 KEN). Three trials were conducted in high endemicity areas: one in western Kenya (Desai 2003 KEN), one in southern Malawi (Phiri 2012 MWI) and one in western Tanzania (Tomashek 2001 TNZ).

Participants

The age of the anaemic children ranged between two months and nine years. In five trials, children had mild to moderate anaemia (Hb 5 to 11 g/dL) at enrolment. The remaining trial enrolled children with Hb levels less than 7 g/dL (Bojang 2010 GMB). In one trial, children had severe malaria (Phiri 2012 MWI), two trials included children with uncomplicated malaria (Cox 2013 GMB; Desai 2003 KEN), for two trials malaria was not part of the inclusion criteria (Bojang 2010 GMB; Tomashek 2001 TNZ) and one trial excluded children with clinical malaria (Verhoef 2002 KEN). Three trials (Bojang 2010 GMB; Phiri 2012 MWI; Tomashek 2001 TNZ) recruited children that attended outpatient clinics or were admitted to hospital, while three trials recruited children from the community (Cox 2013 GMB; Desai 2003 KEN; Verhoef 2002 KEN).

Interventions

Baseline treatments

In four trials, children in intervention and placebo groups received baseline treatment for malaria or anaemia. In two of these trials, all children were given a single dose of SP (Desai 2003 KEN; Tomashek 2001 TNZ). In one trial (Cox 2013 GMB) children received either CQ and SP or artesether-lumefantrine (AL) before randomization to intervention and placebo groups. Phiri 2012 MWI treated all children with intravenous quinine and blood transfusion while in hospital and AL at discharge. In addition, Tomashek 2001 TNZ administered a single dose of mebendazole to all children over the age of 12 months. In Bojang 2010 GMB only children with malaria were treated with quinine and SP or CQ and SP. Verhoef 2002 KEN was the only trial where no baseline treatment was given to children.

Trial interventions

All included RCTs compared IPT to placebo. The types of IPT used were the following:

- SP (500 mg sulfadoxine/25 mg pyrimethamine per tablet, given at an approximate dose of 25 mg sulfadoxine/1.25 mg pyrimethamine per kg) given monthly for an average of 12 weeks or until the end of the malaria transmission period (Bojang 2010 GMB; Desai 2003 KEN; Tomashek 2001 TNZ; Verhoef 2002 KEN). A drug sensitivity study of SP in a multicentre trial in Eastern Kenya and Kigoma Tanzania (Gorissen 2000) between 1998 and 2000 showed efficacy of more than 85%. However, these findings differed from other studies done in East Africa, which reported on resistance of Plasmodium falciparum to SP between 1995 and 1997. This finding did not have a strong association with the clinical evidence (Jelinek 1997; Terlouw 2003). In contrast to East Africa, reports on declining SP efficacy and its resistance on P. falciparum were already reported by several studies in The Gambia by 1998 (Dunyo 2006; von Seidlein 2000).

- AL tablets (20 mg artemether, 120 mg lumefantrine per tablet, children weighing 15 kg or more received two tablets, less than 15 kg received one tablet) given as a three day course (six doses) monthly for 12 weeks (Phiri 2012 MWI). Artemisinin combination therapies (ACTs) were adopted in most African countries after 2005. In Malawi, an earlier study (2004 to 2006) had already shown efficacy of above 85% (Bell 2009). This finding was supported by another study in the same country which found less genetic amplification of P. falciparum to Coartem (Haidar 2009).

- CQ syrup (5 mg/kg) given as a weekly dose (three day course) for 12 weeks (Cox 2013 GMB). CQ sensitivity studies conducted in the early 2000s in The Gambia and Mali revealed low efficacy of CQ (Tekete 2009) with evidence of increased resistance of CQ to P. falciparum (Ord 2007).

Four trials gave iron as part of the intervention. In two trials, all children received iron, regardless of whether they were in the intervention or placebo group (Bojang 2010 GMB; Tomashek 2001 TNZ). Bojang 2010 GMB administered iron for 28 days and Tomashek 2001 TNZ gave iron and folic acid for 12 weeks. In the two-by-two factorial trials (Desai 2003 KEN; Verhoef 2002 KEN), children were randomized to receive either iron or placebo. In addition, children in one of the three intervention groups in Tomashek 2001 TNZ received vitamin A and C (VAC) three times a week.
Co-interventions
Two trials did not report the use of LLINs (Tomashek 2001 TNZ; Verhoef 2002 KEN). In Cox 2013 GMB, LLIN distribution was part of the standard malaria prevention programme and in Desai 2003 KEN all households were issued with LLINs, but both studies did not assess the use of LLINs. Bojang 2010 GMB assessed LLIN use at the end of the transmission period (20.7% in IPT group; 15.3% in placebo) and the reported bed net use in Phiri 2012 MWI was similar in both groups, overall use was 51% (35% treated net, 16% untreated net).

Outcomes
Trials reported on a variety of outcomes (Table 2).

Haematological outcomes
Four trials reported on the mean Hb concentration at 12 weeks follow-up or at the end of the transmission period. Only one trial (Cox 2013 GMB) reported on the mean change in Hb concentration from baseline to follow-up. Four trials reported on the number of children with anaemia at 12 weeks or at the end of the transmission period. Anaemia was defined as Hb < 11 g/dL in three trials (Desai 2003 KEN; Tomashek 2001 TNZ; Verhoef 2002 KEN). Bojang 2010 GMB reported the number of children with an Hb < 7 g/dL and Desai 2003 KEN reported the outcome separately for children with an Hb < 11 g/dL and those with Hb < 7 g/dL. Other reported outcomes included mean corpuscular volume (MCV) at 12 week follow-up (Desai 2003 KEN), serum transferrin receptor (TfR) concentration at 12 weeks follow-up (Desai 2003 KEN; Tomashek 2001 TNZ), iron deficiency measured as serum ferritin < 12 µg/L in Verhoef 2002 KEN and as TfR < 8.5 µg/mL in Tomashek 2001 TNZ and change in erythropoietic response (Cox 2013 GMB).

All-cause mortality and hospital admissions
All-cause mortality plus hospital readmissions due to severe anaemia (Hb < 5 g/dL or clinical indication for blood transfusion) or severe malaria (re-admittance due to confirmed malaria treated with parenteral quinine) at three and six months was the primary outcome in Phiri 2012 MWI. All-cause mortality and hospital readmission because of all-cause severe anaemia or severe malaria were also reported on separately.

Malaria outcomes
Three trials reported clinical malaria. One trial (Bojang 2010 GMB) did not define clinical malaria. Desai 2003 KEN defined clinical malaria as an axillary temperature of 37.5°C or higher with co-existing malaria parasitaemia. Verhoef 2002 KEN reported the proportion of children with at least one malaria attack, defined as a temperature of 37.5°C or higher and a positive dipstick result. Two trials reported malaria parasitaemia (Bojang 2010 GMB; Desai 2003 KEN). Desai 2003 KEN also reported parasite densities. Cox 2013 GMB reported on the prevalence of submicroscopic parasitaemia (detection of parasites’ DNA). Phiri 2012 MWI reported on clinic visits due to microscopically confirmed non-severe malaria and Verhoef 2002 KEN on the time to first occurrence of malaria attack.

Other outcomes
Three trials reported visits to healthcare facilities (outpatients, clinics, pharmacies) (Bojang 2010 GMB; Desai 2003 KEN; Phiri 2012 MWI). Other outcomes reported across trials included nutritional status at the end of the transmission period, compliance with treatment regime (Bojang 2010 GMB), adverse drug reactions (Verhoef 2002 KEN) and change in urinary neopterin (Cox 2013 GMB).

Excluded studies
We excluded eight trials (see Characteristics of excluded studies). Five of these did not include only anaemic children, one did not have a control group, another trial was a sub-analysis of an included trial and the intervention of one study was chemoprophylaxis and not IPT.

Risk of bias in included studies
Overall, risk of bias in included trials was low (see Figure 2 and Figure 3).
Figure 2. Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included trials.
Figure 3. Risk of bias summary: review authors’ judgements about each risk of bias item for each included trial.
Allocation
All trials used adequate methods to generate a random sequence. Three RCTs (Bojang 2010 GMB; Cox 2013 GMB; Phiri 2012 MWI) had adequate allocation concealment. The remaining three trials had insufficient information to make a judgement about risk of bias and were thus judged as having unclear risk of bias.

Blinding
Five RCTs were at low risk of performance bias and adequately blinded participants and personnel. We judged one trial (Tomashek 2001 TNZ) to have high risk of bias, since one of the groups did not receive IPT placebo and the personnel had access to lists of group assignment.

All included trials were at low risk of detection bias and adequately blinded outcome assessors.

Incomplete outcome data
Two trials had high risk of attrition bias. Bojang 2010 GMB had a high rate of loss to follow-up at the end of the transmission period, 23% (136/600) in the intervention group and 21.5% (127/600) in the placebo group. Although the overall loss to follow-up rate in Desai 2003 KEN was not high, there was a significant difference in loss to follow-up at 12 weeks between the placebo group and the other intervention groups: 4% (6/135) in the IPT + iron group; 8.6% (12/139) in the iron group; 6.6% (9/136) in the IPT group, and 20.5% (28/136) in the double placebo group. Follow-up data at 24 weeks follow-up was missing. For Tomashek 2001 TNZ there was also a difference in children lost to follow-up. In the placebo group, the loss to follow-up was 6% (5/82), in the IPT group it was 10% (8/81) and in the IPT + VAC group it was 13% (10/75). Reasons for missing children were not stratified according to groups and we judged the risk of bias to be unclear. The other three trials had low risk of attrition bias.

Selective reporting
Tomashek 2001 TNZ did not report on the primary outcome (mean Hb concentration at follow-up) and was therefore at high risk of reporting bias. One trial (Desai 2003 KEN) did not pre-specify their outcomes in the methods section and we therefore judged risk of bias to be unclear. The remaining three RCTs had low risk of reporting bias.

Other potential sources of bias
We did not identify any other sources of bias in the six included trials.

Effects of interventions
See: Summary of findings for the main comparison Summary of findings table 1

All-cause mortality and hospital admissions at six months
We included three trials (Bojang 2010 GMB; Desai 2003 KEN; Phiri 2012 MWI) with a total of 3160 children in the fixed-effects meta-analysis (Analysis 1.1). Results for all-cause mortality and hospital admissions were included for two trials (Bojang 2010 GMB; Phiri 2012 MWI). Bojang 2010 GMB assessed outcomes at the end of the malaria transmission period and at the end of the following dry season. We included results from the dry season follow-up for this outcome. For Desai 2003 KEN, we only included mortality data since the hospital admissions were not reported. We extracted mortality data from the study flow-chart. IPT did not reduce the risk of death or hospital admission compared to placebo (three trials, 3160 participants; Analysis 1.1; RR = 0.89, 95% CI 0.61 to 1.21). Subgroup analysis further stratifying subgroups according to recruitment (hospital admission versus selected from community) did not show a difference between groups and we thus combined hospital admissions and community recruitments in the main analyses.

Children with anaemia at 12 weeks
We included four RCTs (Bojang 2010 GMB; Desai 2003 KEN; Tomashek 2001 TNZ; Verhoeof 2002 KEN) with a total of 2237 children in the fixed-effects meta-analysis (Analysis 1.2). Bojang 2010 GMB assessed outcomes at the end of the malaria transmission period, therefore length of follow-up depended on time of enrolment. Overall, IPT did not have an effect on the risk of anaemia compared to placebo (four trials, 2237 participants, Analysis 1.2; RR = 0.89, 95% CI 0.61 to 1.21). Subgroup analysis further stratifying subgroups according to recruitment (hospital admission versus selected from community) did not show a difference between groups and we thus combined hospital admissions and community recruitments in the main analyses.
difference: (Chi² = 4.74, P = 0.03, I² = 78.9%). However, the point estimate and CIs between those receiving iron and those not receiving iron was similar, and the subgroup analysis was underpowered to be confident of any conclusion (Analysis 1.2).

There was no significant difference between subgroups for areas with high endemicity versus areas with low endemicity (Chi² = 1.43, P = 0.23, Analysis 2.2; I² = 30.2%).

Subgroup analysis further stratifying subgroups according to recruitment (hospital admission versus selected from community) did not show a difference between groups and we thus combined hospital admissions and community recruitments in the main analyses.

We did not include one intervention arm of Tomashek 2001 TNZ, where children received SP plus VAC, in the meta-analysis. The risk for anaemia was not significantly different in these children compared to those that only received SP and vitamin placebo (one trial, 138 participants, Analysis 3.1).

Mean change in Hb (baseline to 12 weeks)

We included four trials (Bojang 2010 GMB; Cox 2013 GMB; Desai 2003 KEN; Tomashek 2001 TNZ) with a total of 1672 children in the fixed-effects-meta-analysis (Analysis 1.3). Only one trial (Cox 2013 GMB) reported on this outcome and we calculated the values for the other four trials. Bojang 2010 GMB assessed outcomes at the end of the malaria transmission period, therefore length of follow-up depended on time of enrolment.

Overall, the mean change in Hb concentration from baseline to follow-up was 0.32 g/dL higher in the IPT group compared to the placebo group (Mean difference (MD) 0.32, 95% CI 0.19 to 0.45; four trials, 1672 participants; Analysis 1.3; I² = 18%)

Subgroup analysis did not show a difference between children receiving iron and children receiving no iron (Chi² = 0.25, P = 0.62, I² = 0%).

There was also no significant difference between subgroups for areas with high endemicity versus areas with low endemicity (Chi² = 0.17, P = 0.68, I² = 0%; Analysis 2.3).

Subgroup analysis further stratifying subgroups according to recruitment (hospital admission versus selected from community) did not show a difference between groups and we thus combined hospital admissions and community recruitments in the main analyses.

We did not include one intervention arm of Tomashek 2001 TNZ, where children received SP plus VAC, in the meta-analysis. The mean Hb in these children was not different from the mean Hb in children that only received SP (one trial, 138 participants, Analysis 3.3).

DISCUSSION

Summary of main results

The included trials did not demonstrate a difference in mortality or hospital admissions at six months when administering IPT, compared to not administering IPT to anaemic children living in malaria-endemic areas (moderate quality evidence); and also did not demonstrate a difference in the prevalence of anaemia at 12 weeks amongst children that received IPT compared to those that did not receive IPT (moderate quality evidence). IPT for anaemic children living in malaria-endemic areas probably increases the mean change in Hb levels from baseline to follow-up at 12 weeks (moderate quality evidence); and may improve Hb levels at 12 weeks (low quality evidence).
All six included trials were conducted in malaria-endemic areas, four trials in seasonal and two in perennial malaria transmission areas. Three of the six trials were conducted in areas of low endemicity. Anaemic children were recruited either in hospital, where they were treated for severe anaemia, or in the community through a screening procedure. Hb levels considered eligible for inclusion in a study differed across trials. While some trials only recruited children with severe anaemia (Hb 5.0 to 8.0 g/dL; or Hb < 7 g/dL), others only included children with mild anaemia (Hb 7.0 to 10.9 g/dL). In all but two trials, children received treatment for either anaemia or malaria before randomization, which might explain why the subsequent effect of IPT was not very big. We found a small, statistically significant effect on mean Hb levels at follow-up, and on mean change in Hb from baseline to follow-up. However, an increase in Hb levels of 0.32 g/dL at twelve weeks is too small to add a clinically significant effect on children with moderate or severe anaemia.

In the past decade, a decrease in malaria endemicity has been recorded in most of sub-Saharan Africa. There has been a significant decline in malaria prevalence which coincides with a decline in the transmission potentials measured through the recent *P. falciparum* infectious inoculations rates downturn by the *Anopheles* mosquito (Killeen 2007). These in turn have resulted in a further downturn in new malaria infections that may have contributed to the recent shift in anaemia morbidity decline in settings with malaria transmission (Kabanywanyi 2012). Malaria mortality and cumulative probability of deaths have thus also continued to decline steadily (Rumisha 2014). A combination of many malaria interventions have resulted in these reductions, including improved access to effective antimalarial combination therapy, vector control using LLINs and indoor residual spraying as well as intermittent presumptive treatments in infants and pregnant women (Alba 2014).

The results of this Cochrane Review thus need to be interpreted in light of these changes in malaria endemicity. Of the included trials, only three were published in the last five years (Bojang 2010 GMB; Cox 2013 GMB; Phiri 2012 MWI), with two of these trials having been conducted in The Gambia, where malaria endemicity is regarded as being low. The remaining trials were all published over ten years ago; one of these in an area of high malaria endemicity (Desai 2003 KEN) and one where, at the time of the trial, malaria endemicity was moderate to high (Tomashek 2001 TNZ). There could be larger effects of IPT in areas where malaria endemicity is higher.

In addition, the mild effect of IPT in improving Hb levels may be associated with the fact that there are other causes for severe anaemia apart from malaria. Calis 2008 found additional associations between severe anaemia and bacteraemia, hookworm, HIV infection, and Vitamin A and B12 deficiency. They also found an inverse association between iron deficiency and severe anaemia.

Quality of the evidence

We assessed the quality of the body of evidence by using the GRADE approach (Guyatt 2011). We made judgements on the quality of evidence for each outcome by looking at trial limitations, inconsistency, imprecision, indirectness and the likelihood of publication bias (Balshem 2011). Our results show that there is moderate quality evidence that IPT did not have an effect on death or hospital admissions at six months; and anaemia at 12 weeks; and that the mean change in Hb from baseline to 12 weeks was slightly higher amongst children receiving IPT. This means that, when looking at these three outcomes, further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. We found low quality evidence that the mean Hb level at follow-up was slightly higher amongst children receiving IPT, meaning that further research is very likely to have an important impact on our confidence in the estimate of the effect and is likely to change the estimate. We have presented the reasons for downgrading the quality of evidence in the footnotes of Summary of findings for the main comparison.

Potential biases in the review process

We attempted to minimise bias in the review process by conducting a comprehensive search of published and unpublished literature, without language restrictions. Two review authors independently screened abstracts, extracted data and assessed risk of bias. We resolved any discrepancies by involving a third party. We were unable to create funnel plots to assess reporting biases, since less than 10 RCTs met the inclusion criteria.

Agreements and disagreements with other studies or reviews

We are not aware of another review on the treatment of anaemic children with IPT, but two recent reviews on IPT for malaria (Meremikwu 2012; Wilson 2011) included anaemia as one of the outcomes. Although the included children in these reviews did not necessarily have anaemia at enrolment, our findings on the prevalence of anaemia resonate with those of Wilson 2011 (RR 0.84, 95% CI 0.59 to 1.21), but are contradictory to those of Meremikwu 2012. Meremikwu 2012 found a reduced risk of moderate anaemia (RR 0.71, 95% CI 0.52 to 0.98; 8805 participants, five trials) as well as a reduced risk of severe anaemia (RR 0.24, 95% CI 0.06 to 0.94; 5964 participants, two trials) in children with malaria receiving IPT compared to those not receiving IPT. The markedly reduced risk of anaemia in Meremikwu 2012 could be due to subgroup analysis (severe and moderate anaemia groups) which was not done in Wilson 2011. Neither of the reviews found a significant difference in Hb levels at the end of follow-up in children receiving IPT compared to children not receiving IPT.
We found a small, statistically significant effect of IPT on Hb levels.

AUTHORS’ CONCLUSIONS

Implications for practice

The trials did not demonstrate a difference in all-cause mortality and hospital admissions at six months; and prevalence of anaemia at 12 weeks amongst children that received IPT compared to those that did not receive IPT. IPT probably increases the Hb levels of anaemic children. Despite the small benefits of IPT on Hb levels of anaemic children, it does not warrant routine administration of IPT to anaemic children. However, one needs to take into consideration that the majority of trials were conducted in low endemicity areas, where any effect is likely to be modest.

Implications for research

Only one trial was adequately powered to detect a difference in the risk of all-cause mortality and hospital admissions due to severe anaemia or severe malaria. Future trials should be adequately powered to detect differences in patient-orientated outcomes (for example, all-cause mortality) and consideration should be given to malaria endemicity.

ACKNOWLEDGEMENTS

We thank Paul Garner, Dave Sinclair, Marty Richardson, Taryn Young and Vittoria Lutje for their comments and support. The editorial base of the Cochrane Infectious Diseases Group is funded by UKaid from the UK Government for the benefit of developing countries.

AR is supported in part by the Effective Health Care Research Consortium, which is funded by UKaid from the UK Government.

REFERENCES

References to studies included in this review

Bojang 2010 GMB (published data only)

Cox 2013 GMB (published data only)

Desai 2003 KEN (published data only)

Phiri 2012 MWI (published data only)

Tomashek 2001 TNZ (published data only)

Verhoef 2002 KEN (published data only)

References to studies excluded from this review

Bojang 1997 GMB (published data only)

Brown 2005 (published data only)

Intermittent preventive antimalarial treatment for children with anaemia (Review)

Kweku 2008

Massaga 2003

Nakibuuka 2009

Rohner 2010

Terlouw 2004

Additional references

Akech 2008

Alba 2014

Antony 2008

Balarajan 2011

Balshem 2011

Bell 2009

Calis 2008

Crawley 2004

Dicko 2011

Dunyo 2006

Gething 2011

Gorissen 2000

Granham-McGregor 2001

Greenwood 2006
Greenwood B. Review: Intermittent preventive treatment - a new approach to the prevention of malaria in children in
areas with seasonal malaria transmission. *Tropical Medicine & International Health* 2006;11(7):983–91.

Greenwood 2010

Guyatt 2011

Haidar 2009

Higgins 2011

Jelinek 1997

Kabanywanyi 2012

Kalter 1997

Killeen 2007

Lefebvre 2011

Lengeler 2009
Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. *Cochrane Database of Systematic Reviews* 2009, Issue 2. DOI: 10.1002/14651858.CD000363.pub2

Looareesuwan 1987

Lozoff 1991

Meremikwu 2009

Meremikwu 2012
Meremikwu M, Donegan S, Sinclair D, Esu E, Oiringanje C. Intermittent preventive treatment for malaria in children living in areas with seasonal transmission. *Cochrane Database of Systematic Reviews* 2012, Issue 2. DOI: 10.1002/14651858.CD003756.pub4

Obono 2007

Okebe 2011

Ord 2007

Phillips 1992

Phiri 2008

Phiri 2011
RevMan 2014 [Computer program]
The Nordic Cochrane Centre, The Cochrane Collaboration.

Rumisha 2014

Tekete 2009

Terlouw 2003

Von Seidlein 2000

White 2004

WHO 2000

WHO 2006

WHO 2008

WHO 2010

WHO 2012a

WHO 2012b

WHO 2013

Wilson 2011

References to other published versions of this review

Athuman 2013

*Indicates the major publication for the study
CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Bojang 2010 GMB

| Methods | **Trial design**: Individually randomized, controlled double-blind trial
Multicentre trial: Yes
Trial duration: 2 years |
| --- | --- |
| Participants | **Recruitment**: Children presenting to the out-patient clinic or ward at the Royal Teaching Hospital, Banjul; Medical Research Council Hospital, Fajara; and major health centres at Birkama, Essau and Faji Kunda during 2003 and 2004 transmission period (July to December), Sibanor was added during the 2004 period
Inclusion criteria:
• Age: 3 months to 9 years
• Anaemia: Hb < 7 g/dL
• Sickle-cell anaemia: not reported
• Other: signed consent from guardian
Other co-morbidities: Not reported
Sample size: 1200 enrolled |
| Interventions | **Total number of intervention groups**: 2
Presumptive treatment for all participants:
• Malaria was treated with intramuscular quinine followed by SP (majority) or CQ plus SP
• Children stayed in hospital until all signs of respiratory distress had subsided and Hb concentration had increased over that found on admission
• Children with Hb < 5 g/dL received blood transfusion
• All children received iron (ferrous fumerate syrup: 2 mg/kg) for 28 days, starting at time of discharge
• 1st follow-up 7 days after discharge: Hb measurement and blood films for malaria, and treatment of any medical condition
Interventions:
1. IPT with SP
2. Placebo (lactose and maize starch)
Dose and timing of intervention:
• SP dose: 1.25 mg pyrimethamine/25 mg sulphadoxine per kg
• 1st dose (SP or placebo): at 7 day follow-up
• Monthly doses until end of transmission season
Duration of intervention period: until the end of the transmission season (July to December)
Place and person delivering intervention:
• 1st dose administered by project staff at the hospital or health centre where the child had been admitted
• Monthly doses were given at health centre closest to where the child was living by trained field workers under supervision of clinic staff
Co-interventions:
• ITN use: was assessed at the end of the transmission period (20.7% in IPT group; 15.3% in placebo group) |
- Other: none

Additional treatments:
- Children with fever ≥ 37.5°C or a history of recent fever and malaria parasitaemia were treated with SP and CQ
- Children with severe malaria were treated with IM quinine
- Children that presented with uncomplicated malaria within one week of receiving SP chemoprevention received oral quinine
- Children with Hb < 9 g/dL were treated with iron for a further 28 days if they had completed their initial iron treatment
- Children with severe anaemia were referred for admission

Co-interventions equal in each arm? (if not, describe): Yes

Outcomes

Primary outcome:
1. Proportion of children with moderate or severe anaemia at the end of the transmission period

Secondary outcomes:
1. Mean Hb level at end of transmission period
2. Clinical episodes of malaria during the surveillance period
3. Outpatient attendance
4. Prevalence of parasitaemia and splenomegaly
5. Nutritional status at the end of the transmission period
6. Compliance with treatment regimen

Measurement time points:
- Day 7: Hb, blood film
- Passive surveillance during intervention period
- End of malaria season
- End of dry season

How were outcomes assessed?
- Hb and blood film at day 7 and end of malaria transmission season
- Passive morbidity surveillance during intervention period
- Interviews with mothers at end of dry season

Notes

Country: The Gambia

Setting: Urban and peri-urban

Transmission area: Seasonal transmission

Source of funding: Gates Malaria partnership

Conflict of interest stated: Authors state that they have no competing interests

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“children were individually randomised into either the SP or the placebo group in a 1:1 ratio at the time of admission, using permuted blocks of 12 generated by computer using the STATA program. Blocks were not split across centres”</td>
</tr>
</tbody>
</table>
Bojang 2010 GMB (Continued)

<table>
<thead>
<tr>
<th>Bias Type</th>
<th>Risk Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Tablets (enough for 6 doses) were packed into envelopes bearing the randomisation number by MRC staff not involved in the trial in any other way. The next envelope in sequence was assigned to the child at the time of their admission to hospital.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>“None of the investigators, health care centre staff or laboratory staff participating in the trial had access to the code during the trial”. Placebo and active tablet were identical in shape and colour.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>“None of the investigators, health care centre staff or laboratory staff participating in the trial had access to the code during the trial”.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Loss to follow-up was similar in both groups (SP: 23%; placebo: 21.5%), but was over 20% in each group.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All pre-specified outcomes reported and checked with protocol.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>Discrepancy between text and flow-chart regarding number of children seen at follow-up.</td>
</tr>
</tbody>
</table>

Cox 2013 GMB

Methods

- **Trial design**: Population-based RCT (proof of concept study)
- **Multicentre trial**: No
- **Trial duration**: 2007 to 2008

Participants

- **Recruitment**: Eligible children identified through active and passive malaria surveillance in participating communities (West Kiang district, lower river region, The Gambia)
- **Inclusion criteria**:
 - Age: 12 to 72 months
 - For enrolment: Uncomplicated malaria at day 0 (history of fever 48 hours prior to presentation or a measured temperature > 37.5°C with peripheral parasitaemia)
 - For randomization: Anaemia Hb 6.9 to 11.0 g/dL on day 3 with no peripheral parasitaemia
 - Sickle-cell anaemia: not reported
- **Exclusion criteria**:
 - Unable to take oral medication
 - Features of severe malaria
 - Known haemoglobinopathy
• Enrolled in another project
• Had already received antimalaria drugs from outside the project
• Were prescribed other drugs with potential antimalarial or anti-anaemic effects (for example, cotrimoxazole or haematinics)
• Severely wasted children

Other co-morbidities: Not reported

Sample size: Enrolled into trial: 132; randomized to receive IPT/placebo: 96

Interventions

Baseline treatment for all children:
- CQ syrup (3 days) with SP on day 0 (52 children in 2007)
- AL course (80 children in 2007 and 2008)

Total number of intervention groups: 2
1. IPT (CQ)
2. Placebo

Dose and timing of intervention:
- Weekly CQ or placebo syrup: 50 mg CQ base per 5 mL at a dose of 5 mg/kg for 3 days

Duration of intervention period: 90 days (12 weeks)

Place and person delivering intervention:
- Study nurse administered syrup at home of child

Co-interventions:
- ITN use: ITN distribution part of standard malaria but trial does not report the use of bed nets per group
- Other: none

Additional treatments:
- Comorbidities were treated accordingly avoiding cotrimoxazole and haematinics
- Children with positive tests were treated with either CQ/SP (2007) or ACT (2007 and 2008)

Co-interventions equal in each arm? (if not, describe): Yes

Outcomes

Primary outcome:
1. Hb change from day 3 post-treatment (randomization to IPT or no IPT)

Secondary outcomes:
1. Changes in erythropoietic response
2. Changes in urinary neopterin
3. Prevalence of submicroscopic malaria parasitaemia
4. Hb change in 2 placebo groups to investigate effects of initial malaria treatment therapy

Measurement time points:
- Baseline (day 3); days 15, 30, 45, 70, 90

How were outcomes assessed?
- Fingerprick or venous blood taken by study nurse at follow-up visits
- Active and passive surveillance
- Twice weekly temperature monitoring of enrolled children by village assistants
- Children with fever screened for malaria with rapid test

Notes

Country: The Gambia

Setting: Rural
Transmission area: Seasonal transmission
Source of funding: UK Medical Research Council
Conflict of interest stated: Authors stated no competing interests.

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“The block randomisation to the post-malaria treatment of weekly CQ or placebo in both 2007 and 2008 was double blinded and was carried out in blocks of eight. The randomisation codes were generated by a staff member independent of the study team and held by the external trial monitor”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“Treatment codes were labelled A to H and placed in sequentially numbered, opaque, sealed envelopes held by the study nurses. Allocation to the treatment was by matching the code in the envelope to a bottle of the intervention labelled with the same code and then labelled with the subject ID”</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Both participants and personnel were blinded, intervention and placebo syrups were in similar amber-coloured bottles with matching caps and labels</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Double-blinded trial, treatment codes held by external trial monitor</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All participants accounted for, loss to follow-up: 2% in IPT group; 7% in placebo group. All lost due to second malaria episode</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All pre-specified outcomes reported on.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No other sources of bias identified.</td>
</tr>
</tbody>
</table>
Desai 2003 KEN

Methods

Trial design: RCT with 2 X 2 factorial design
Multicentre trial: no
Trial duration: Children were screened between April to November 1999

Participants

Recruitment: All resident children in 15 villages in Asembo, Bondo district, Kenya were screened
Inclusion criteria:
- Age: 2 to 36 months
- Anaemia: mild anaemia (Hb 7.0 to 10.9 g/dL)
- Malaria: aparasitaemic or parasite counts < 20,000 parasites/mm³
- Sickle-cell anaemia: children with HbSS phenotype excluded
- Other: no reported iron supplementation, SP treatment or blood transfusions within the last 2 weeks
Other co-morbidities: Not reported
Sample size: 554 participants randomized; 546 enrolled; 491 followed up at 12 weeks; 468 followed up at 24 weeks

Interventions

Total number of intervention groups: 4
Presumptive treatment for all participants: single dose of SP (500 mg sulphadoxine and 25 mg pyrimethamine per tablet). Children ≤ 10kg received half a tablet, children > 10kg received one tablet
1. IPT (SP) + iron
2. IPT (SP) + iron placebo
3. IPT placebo + daily iron
4. IPT placebo + iron placebo (double placebo)
Dose, and timing of intervention: IPT with SP (or placebo) at 4 and 8 weeks; iron (or placebo) given daily for 12 weeks (3 to 6 mg/kg/day, orally). IPT given as crushed tablets mixed with water
Duration of intervention period: 12 weeks
Place and person delivering intervention:
- Iron delivered through daily home visits by staff
- Unclear where SP presumptive dose was administered
- Unclear where and by whom other doses of SP were given - not reported
Co-interventions:
- ITN use: All households were issued with ITNs but the use thereof was not further assessed
- Other: none
Additional treatments: Children with symptomatic malaria (temp ≥ 37.5°C with any malaria parasitaemia or parasitaemia > 5000 parasites/mm³) received oral quinine (10 mg/kg, 3 times/day for 7 days). Children who developed severe malaria, severe anaemia (Hb < 5.0g/dL) or other severe disease requiring hospitalization were referred for further treatment
Co-interventions equal in each arm? (if not, describe): Yes

Outcomes

Outcomes not specified according to primary and secondary outcomes:
1. Hb concentration (measured in g/dL)
2. Hematological recovery (Hb ≥11 g/dL before or at week 12)
3. Severe anaemia (Hb < 7g/dL before or at week 12)
4. MCV (measured in fL)
5. sTfR concentration (measured in µg/mL)
6. Parasite density (parasites/mm³)
7. Malaria parasitaemia
8. Clinical malaria (axillary temperature 37.5°C with co-existing malaria parasitaemia)
9. Clinic visits (Incidence, number of episodes)

How were outcomes assessed?

- Home visits every 2 weeks for completion of a morbidity questionnaire and assessment of cutaneous reactions and axillary temperature
- Fingerprick or heel-prick blood samples were obtained every 4 weeks (just before the next dose of SP or SP placebo) for Hb levels and presence of malaria parasites
- The frequency of local clinic and hospital attendance was monitored using a passive surveillance system

Notes

- **Country:** Western Kenya
- **Setting:** Rural
- **Transmission area:** Perennial transmission
- **Source of funding:** US agency for International Development, Netherlands Foundation for the advancement of Tropical research
- **Conflict of interest stated:** Not reported

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“Balanced block randomisation (8 children/block) and a random number listing generated independently before the study”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Children were assigned to 1 of the 4 groups sequentially according to the random number listing by one author. Drugs and placebos were identical. Code to true drug and placebo assignment was revealed only after completion of analysis. Still unclear whether allocation was concealed sufficiently - did they use numbered envelopes or bottles?</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias) All outcomes</td>
<td>Low risk</td>
<td>Placebo and trial drugs were identical; participants (or their mothers) and staff administering the drugs were thus not aware of the study group. The code was only broken after data analysis</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Low risk</td>
<td>Placebo and trial drugs were identical; staff assessing outcomes were thus not aware of the trial group. The code was only broken</td>
</tr>
</tbody>
</table>
Desai 2003 KEN (Continued)

Incomplete outcome data (attrition bias)	High risk	Loss to follow-up at 12 weeks: 4% (IPT + iron), 8.6% (iron), 6.6% (IPT) and 20.5% (double placebo). Reported reason: mostly migration (23/28 for double placebo group), loss to follow-up at 24 weeks - data missing
Selective reporting (reporting bias)	Unclear risk	Outcomes not listed in Methods section (protocol?)
Other bias	Low risk	No.

Phiri 2012 MWI

Methods

Trial design: Randomized double-blind, placebo-controlled trial
Multicentre trial: Yes
Trial duration: June 2006 to August 2009

Participants

Recruitment: Children were recruited from four hospital in southern Malawi: Queen Elizabeth Central hospital (Blantyre), Chikwawa District hospital, Thyolo District hospital, Zomba Central hospital
Inclusion criteria:
- Age: 4 to 59 months
- Anaemia: admitted with and treated for severe malarial anaemia
- Convalescent children surviving hospital stay (received transfusion and completed the course of intravenous quinine) with Hb > 5g/dL
- Weight > 5 kg
- Able to switch to oral medication
- Sitting unaided
Exclusion criteria:
- Sickle-cell anaemia
- Blood loss due to trauma
- Haematological malignancy
- Known bleeding disorder
- Hypersensitivity to AL
- Treatment with AL within a week of admission
- Non-residency in trial area
- Previous participation in the trial
- Participation in another clinical trial
- Known need for medication prohibited during the intervention period
- Surgery scheduled during the trial
Other co-morbidities: 8% of children were infected with HIV
Sample size: 1431 randomized, 1414 allocated to groups; analysed 4310

Interventions

Presumptive treatment for all participants: Six doses of AL as part of the standard 3 day course in hospital. Children < 15 kg received one tablet; children > 15 kg received 2 tablets, once every 12 hours for 3 days
Total number of intervention groups:
1. AL
2. Placebo

Dose and timing of intervention:
- AL or placebo: Children < 15kg received one tablet; children > 15kg received 2 tablets, once every 12 hours for 3 days at 1 month and 2 months post discharge

Duration of intervention period:
3 months

Place and person delivering intervention:
- The first daily dose (both at 1 and 2 months pd) was given by trial team member who visited the home every morning for 3 days
- The second dose was left with the parent or guardian to give in the evening (adherence assessed the following morning)

Co-interventions:
- ITN use: similar in both groups; 35% used treated net; 16% used untreated net; and 48% used no net (self-reported)
- Other: none

Additional treatments:
- Rescue treatment for acute malaria
- Discharge - month 3: oral quinine for 5 days
- Month 4 to 6 (extended follow-up period): AL
- Treatment for severe malaria
- Discharge - month 3: intravenous quinine and oral quinine for 5 days
- Month 4 to 6 (extended follow-up): intravenous quinine and AL
- Children with severe disease were admitted to hospital
- Children with recurrent severe anaemia received blood transfusions
- Bacterial and other infections treated as per physician's discretion

Co-interventions equal in each arm? (if not, describe):
Yes

Outcomes

Primary outcome:
1. Composite outcome of all-cause mortality and hospital readmission because of all-case severe anaemia (Hb < 5 g/dL or clinical indication for blood transfusion) or severe malaria (readmittance to hospital due to confirmed malaria treated with parenteral quinine) between 1 and 6 months

Secondary outcomes:
1. All-cause mortality
2. Hospital readmission because of all-case severe anaemia or severe malaria
3. All-cause hospital admission
4. All-cause sick child clinic visits
5. Clinic visits because of microscopically confirmed non-severe malaria

Measurement time points:
- Observation time divided into 3 periods:
- Discharge - month 1 pd (before IPT)
- 1 to 3 months pd (IPTpd period)
- 4 to 6 months pd (extended follow-up period)
- All children seen at 6 months for assessment of Hb and malaria parasitaemia
- Passive case detection from discharge to month 6

How were outcomes assessed?
- 6 month follow-up by passive case detection: mothers were asked to bring children to a study clinic if they had fever or were unwell. Standardized forms used to
Phiri 2012 MWI (Continued)

record information; Hb, temp and malaria smear

Notes
Country: Malawi
Setting: Urban/peri-urban/rural
Transmission area: Perennial
Source of funding: Netherlands African Partnership for Capacity Development and Clinical Interventions against Poverty-related Diseases; UBS Optimus foundation; Gates Malaria Partnership
Conflict of interest stated: Authors declared no conflict of interest

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Computer-generated list of random numbers, "stratified by hospital and weight group (< 15 kg and 15 kg or more) in randomly varying block sizes of two, four, or six"</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Sequentially numbered envelopes containing AL or placebo.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias) All outcomes</td>
<td>Low risk</td>
<td>Authors did not mention that placebo and AL were identical tablets, but described the trial as "double-blind"</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Low risk</td>
<td>Masking was maintained and the code only broken once all data sets were closed</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>All participants accounted for. Loss to follow-up rates similar across groups (7% at 6 months)</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All pre-specified outcomes reported on.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No.</td>
</tr>
</tbody>
</table>

Tomashek 2001 TNZ

Methods
Trial design: Randomized double-blind trial
Multicentre trial: No
Trial duration: March 1998 to May 1998

Participants
Recruitment: Children living in refugee camp diagnosed with clinical anaemia
Inclusion criteria:
- Age: 6 to 59 months
- Anaemia: Hb 5.0 to 8.0 g/dL
• Malaria: severe malarial infection excluded
• Informed consent

Exclusion criteria
- Sickle-cell anaemia
- Signs or symptoms of heart failure
- Splenomegaly

Other co-morbidities: Hookworm

Sample size: 238 randomized, 215 analysed

<table>
<thead>
<tr>
<th>Interventions</th>
<th>Presumptive treatment for all participants:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Treatment for malaria with SP (> 48 months: one SP tablet (500 mg sulphadoxine and 25 mg pyrimethamine); 12 to 47 months: half a tablet; 6 to 12 months: quarter of a tablet)</td>
</tr>
<tr>
<td></td>
<td>• Mebendazole (24 to 59 months one tablet (500 mg mebendazole); 12 to 23 months half a tablet; 6 to 12 months did not receive)</td>
</tr>
</tbody>
</table>

Total number of intervention groups: 3
1. Vitamin placebo 3X per week
2. Vitamin placebo + SP
3. VAC + SP

Dose, and timing of intervention:
- Vitamin (or placebo) given 3 times a week (> 18 months: chewable tablet of 400 µg vitamin A and 75 mg vitamin C; < 18 months: chewable tablet: 400 µg vitamin A and 30 mg vitamin C)
 - SP week 4, 8, and 12 (> 48 months: one SP tablet (500 mg sulphadoxine and 25 mg pyrimethamine); 12 to 47 months: half a tablet; 6 to 12 months: quarter of a tablet)

Duration of intervention period: 3 months

Place and person delivering intervention:
- Home health visitor administered one dose of iron and placebo or iron and VAC at weekly home visits
- At visits parents were given 2 additional doses of the appropriate treatment to be given on every second day for that week
- In addition, each participant visited the clinic monthly (at week 4, 8, 12) for physical examination, weight and height measurement, Hb measurement, malaria blood smear
- Participants in group 2 and 3 were given monthly doses of SP at this visit

Co-interventions:
- ITN use: not reported
- Other: Iron and folic acid supplement for all children (> 18 months: one tablet containing 250 µg ferrous fumarate (= 60mg of elemental iron) and 250 µg folic acid three times a week; < 18 months received half a tablet 3 times a week)

Additional treatments:
- Participants in group 1 were given CQ if they presented to the clinic with symptomatic malaria

Co-interventions equal in each arm? (if not, describe): No

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Outcomes not specified as primary or secondary outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Mean Hb</td>
</tr>
<tr>
<td></td>
<td>2. Prevalence of anaemia (Hb < 11.0 g/dL)</td>
</tr>
<tr>
<td></td>
<td>3. Mean TfR level</td>
</tr>
</tbody>
</table>
Tomashek 2001 TNZ (Continued)

<table>
<thead>
<tr>
<th>Measurement time points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hb: enrolment, week 4, 8 and 12</td>
</tr>
<tr>
<td>• TfR: enrolment, week 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How were outcomes assessed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• At each monthly visit: physical examination, height and weight measurement, Hb and malaria smear</td>
</tr>
<tr>
<td>• Laboratory measurements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country: Tanzania</td>
</tr>
<tr>
<td>Setting: Rural</td>
</tr>
<tr>
<td>Transmission area: Not reported</td>
</tr>
<tr>
<td>Source of funding: Woodruff Foundation, Atlanta, Georgia.</td>
</tr>
<tr>
<td>Conflict of interest stated: Not reported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
</tr>
<tr>
<td>Random sequence generation (selection bias)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
</tr>
<tr>
<td>Other bias</td>
</tr>
</tbody>
</table>
Methods

Trial design: Double-blind, placebo controlled trial with a 2x2 factorial design
Multicentre trial: No
Trial duration: 1998 to 2000

Participants

Recruitment: Children were recruited (randomly selected) from communities neighbouring the research clinic in the Mtito Andei Division, Eastern Province, Kenya at the start of the rainy season
Inclusion criteria:
- Age: 2 to 36 months
- Anaemia: Hb 6.0 to 11.0 g/dL
- Sickle-cell anaemia: not reported
- Other:
 - Temperature < 37.5°C
 - No symptoms suggestive of malaria or anaemia
 - No systemic illness in combination with a blood dipstick result showing current or recent malarial infection
 - Signed consent from parents
 - No allergy to sulfa drugs
 - No history of using drugs containing sulfa in previous 3 weeks
 - Positive dipstick result without symptoms of systemic illness were included
Other co-morbidities: Not reported
Sample size: 328 randomized, 307 analysed

Interventions

Total number of intervention groups: 4
1. IPT (SP) + iron
2. IPT (SP) + iron placebo
3. IPT placebo + iron
4. IPT placebo + iron placebo
Dose, and timing of intervention:
- SP: 1.25 mg pyrimethamine/25 mg sulphadoxine per kg every 4 weeks
- Iron: ferrous fumerate suspension, targeted dose: 6 mg elemental iron/kg/week administered twice per week
Duration of intervention period: 12 weeks
Place and person delivering intervention:
- Iron (or placebo) administered by community health workers twice a week, mothers took children to health workers (place unknown)
- SP (or placebo) administered by clinical officer
Co-interventions:
- ITN use: not reported
- Other: none
Additional treatments:
- Children withdrawn and treated appropriately if they had
- Hb < 5.0 g/dL
- Severe and complicated malaria
- Manifestations of other diseases
- Children with malaria attacks were treated with amodiaquine or halofantrine if unsuccessful
- Treated for other common illnesses
Co-interventions equal in each arm? (if not, describe): Yes
Outcomes

Primary outcome:
1. Hb concentration at the end of follow-up (12 weeks)
2. Proportion of children with at least one malaria attack (defined as presence of fever, that is temperature $\geq 37.5^\circ C$, and a positive dipstick result)

Secondary outcomes:
1. Anaemia (Hb < 11.0 g/dL)
2. Iron deficiency (serum ferritin concentration < 12 µg/L)
3. Adverse drug reactions
4. Time to first occurrence of malaria attack

Measurement time points:
- Baseline, 4 weeks, 8 weeks, 12 weeks

How were outcomes assessed?
- Capillary blood tested for malaria (dipstick) and Hb measured at each visit (4, 8, 12 weeks)
- Surveillance and monitoring of illness episodes and adverse effects at twice weekly meetings with community healthworker (questionnaires)

Notes

Country: Kenya
Setting: Unclear - rural?
Transmission area: Seasonal transmission
Source of funding: Netherlands foundation for the Advancement of Tropical Research
Conflict of interest stated: Declared no conflicts. Author contacted for follow-up Hb concentration values

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“The allocation schedule was generated by one of us (HV) for each block, by means of tables with randomised permutations, and only after acceptance of all children making up a block”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>“The order of the children listed in each block was concealed from the person generating the allocation schedule” - unclear, was this not the same person?</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Participants were blinded, placebos and active compounds were indistinguishable in taste and appearance</td>
</tr>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>None of the field investigators was aware of the code until after crude analysis and a plan for further analysis had been prepared</td>
</tr>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Incomplete outcome data (attrition bias)

<table>
<thead>
<tr>
<th>All outcomes</th>
<th>Low risk</th>
<th>All participants accounted for. Loss to follow-up rates similar across groups</th>
</tr>
</thead>
</table>

Selective reporting (reporting bias)

<table>
<thead>
<tr>
<th>High risk</th>
<th>Do not report on mean Hb concentrations (primary outcome), only on the difference in Hb concentration between groups</th>
</tr>
</thead>
</table>

Other bias

<table>
<thead>
<tr>
<th>Low risk</th>
<th>No.</th>
</tr>
</thead>
</table>

Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bojang 1997 GMB</td>
<td>Intervention is chemoprophylaxis, not IPT.</td>
</tr>
<tr>
<td>Browne 2005</td>
<td>Anaemia not part of inclusion criteria - study assessed effects on preventing anaemia</td>
</tr>
<tr>
<td>Grobusch 2007</td>
<td>Anaemia not part of inclusion criteria.</td>
</tr>
<tr>
<td>Kweku 2008</td>
<td>Anaemia not part of inclusion criteria.</td>
</tr>
<tr>
<td>Massaga 2003</td>
<td>Anaemia not part of the inclusion criteria.</td>
</tr>
<tr>
<td>Nakibuuka 2009</td>
<td>No control group - comparing two malaria treatment regimes.</td>
</tr>
<tr>
<td>Rohner 2010</td>
<td>Anaemia not part of the inclusion criteria.</td>
</tr>
<tr>
<td>Terlouw 2004</td>
<td>Subanalysis of Desai 2003 KEN.</td>
</tr>
</tbody>
</table>
DATA AND ANALYSES

Comparison 1. IPT versus placebo

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality plus hospital admissions at 6 months</td>
<td>3</td>
<td>3160</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.90 [0.71, 1.13]</td>
</tr>
<tr>
<td>1.1 Iron</td>
<td>2</td>
<td>1474</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.96 [0.56, 1.67]</td>
</tr>
<tr>
<td>1.2 No iron</td>
<td>2</td>
<td>1686</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.88 [0.68, 1.14]</td>
</tr>
<tr>
<td>Children with anaemia at 12 weeks</td>
<td>4</td>
<td>2237</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.88, 1.07]</td>
</tr>
<tr>
<td>2.1 Iron</td>
<td>4</td>
<td>1801</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.87 [0.74, 1.02]</td>
</tr>
<tr>
<td>2.2 No iron</td>
<td>2</td>
<td>436</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.09 [0.96, 1.23]</td>
</tr>
<tr>
<td>Mean change in Hb (baseline to 12 weeks)</td>
<td>4</td>
<td>1672</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.32 [0.19, 0.45]</td>
</tr>
<tr>
<td>3.1 Iron</td>
<td>3</td>
<td>1341</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.30 [0.15, 0.45]</td>
</tr>
<tr>
<td>3.2 No iron</td>
<td>2</td>
<td>331</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.38 [0.12, 0.65]</td>
</tr>
<tr>
<td>Mean Hb at 12 weeks</td>
<td>4</td>
<td>1672</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.35 [0.06, 0.64]</td>
</tr>
<tr>
<td>4.1 Iron</td>
<td>3</td>
<td>1341</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.24 [0.08, 0.40]</td>
</tr>
<tr>
<td>4.2 No iron</td>
<td>2</td>
<td>331</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.57 [-0.10, 1.23]</td>
</tr>
</tbody>
</table>

Comparison 2. IPT in high versus low endemic areas

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality plus hospital admissions at 6 months</td>
<td>3</td>
<td>3160</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.90 [0.71, 1.13]</td>
</tr>
<tr>
<td>1.1 High endemicity</td>
<td>2</td>
<td>1960</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.92 [0.71, 1.19]</td>
</tr>
<tr>
<td>1.2 Low endemicity</td>
<td>1</td>
<td>1200</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.78 [0.43, 1.44]</td>
</tr>
<tr>
<td>Children with anaemia at 12 weeks</td>
<td>4</td>
<td>2237</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.97 [0.88, 1.07]</td>
</tr>
<tr>
<td>2.1 High endemicity</td>
<td>2</td>
<td>709</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.02 [0.90, 1.15]</td>
</tr>
<tr>
<td>2.2 Low endemicity</td>
<td>2</td>
<td>1528</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.89 [0.74, 1.07]</td>
</tr>
<tr>
<td>Mean change in Hb (baseline to 12 weeks)</td>
<td>4</td>
<td>1672</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.32 [0.19, 0.45]</td>
</tr>
<tr>
<td>3.1 High endemicity</td>
<td>2</td>
<td>641</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.35 [0.17, 0.53]</td>
</tr>
<tr>
<td>3.2 Low endemicity</td>
<td>2</td>
<td>1031</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.29 [0.10, 0.48]</td>
</tr>
<tr>
<td>Mean Hb at 12 weeks</td>
<td>4</td>
<td>1672</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.35 [0.06, 0.64]</td>
</tr>
<tr>
<td>4.1 High endemicity</td>
<td>2</td>
<td>641</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.44 [-0.03, 0.91]</td>
</tr>
<tr>
<td>4.2 Low endemicity</td>
<td>2</td>
<td>1031</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.20 [0.01, 0.40]</td>
</tr>
</tbody>
</table>
Comparison 3. IPT plus Vitamin A and C versus IPT in the presence of iron

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Children with anaemia at 12 weeks</td>
<td>1</td>
<td>138</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>0.96 [0.75, 1.23]</td>
</tr>
<tr>
<td>2 Mean change in Hb (baseline to 12 weeks)</td>
<td>1</td>
<td>138</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.0 [-0.48, 0.48]</td>
</tr>
<tr>
<td>3 Mean Hb at 12 weeks</td>
<td>1</td>
<td>138</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>-0.10 [-0.65, 0.45]</td>
</tr>
</tbody>
</table>

Analysis 1.1. Comparison 1 IPT versus placebo, Outcome 1 All-cause mortality plus hospital admissions at 6 months.

Comparison: 1 IPT versus placebo

Outcome: 1 All-cause mortality plus hospital admissions at 6 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT n/N</th>
<th>Placebo n/N</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight %</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (1)</td>
<td>6/135</td>
<td>2/139</td>
<td></td>
<td>1.5 %</td>
<td>3.09 [0.63, 15.04]</td>
</tr>
<tr>
<td>Bojang 2010 GMB (2)</td>
<td>18/600</td>
<td>23/600</td>
<td></td>
<td>17.7 %</td>
<td>0.78 [0.43, 1.44]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>735</td>
<td>739</td>
<td></td>
<td>19.2 %</td>
<td>0.96 [0.56, 1.67]</td>
</tr>
<tr>
<td>Total events: 24 (IPT), 25 (Placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $\chi^2 = 2.53, df = 1$ (P = 0.11); $I^2 = 61%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 0.13$ (P = 0.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (3)</td>
<td>1/136</td>
<td>4/136</td>
<td></td>
<td>3.1 %</td>
<td>0.25 [0.03, 2.21]</td>
</tr>
<tr>
<td>Phiri 2012 MWI (4)</td>
<td>91/706</td>
<td>101/708</td>
<td></td>
<td>77.7 %</td>
<td>0.90 [0.69, 1.18]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>842</td>
<td>844</td>
<td></td>
<td>80.8 %</td>
<td>0.88 [0.68, 1.14]</td>
</tr>
<tr>
<td>Total events: 92 (IPT), 105 (Placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $\chi^2 = 3.32, df = 1$ (P = 0.25); $I^2 = 24%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 0.97$ (P = 0.33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1577</td>
<td>1583</td>
<td></td>
<td>100.0 %</td>
<td>0.90 [0.71, 1.13]</td>
</tr>
<tr>
<td>Total events: 116 (IPT), 130 (Placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $\chi^2 = 3.86, df = 3$ (P = 0.28); $I^2 = 22%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 0.92$ (P = 0.36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: $\chi^2 = 0.09, df = 1$ (P = 0.76); $I^2 = 0.0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(1) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.

(2) Bojang 2010: All children were treated for malaria (quinine and SP; if Hb <5g/dl transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children.

(3) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks.

(4) Phiri 2012: All children received treatment for severe malarial anaemia (transfusion and quinine) as well as six doses of arthemether-lumefantrine (AL). IPT or placebo group received six doses at 1 and 2 months post discharge.

Analysis 1.2. Comparison 1 IPT versus placebo, Outcome 2 Children with anaemia at 12 weeks.

Comparison: 1 IPT versus placebo.

Outcome: 2 Children with anaemia at 12 weeks.

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT n/N</th>
<th>Placebo n/N</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomashek 2001 TNZ (1)</td>
<td>48/81</td>
<td>53/82</td>
<td>0.92 [0.72, 1.17]</td>
<td>16.5%</td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (2)</td>
<td>56/135</td>
<td>61/139</td>
<td>0.95 [0.72, 1.24]</td>
<td>18.9%</td>
<td></td>
</tr>
<tr>
<td>Verhoef 2002 KEN (3)</td>
<td>30/82</td>
<td>42/82</td>
<td>0.71 [0.50, 1.02]</td>
<td>13.2%</td>
<td></td>
</tr>
<tr>
<td>Bojang 2010 GMB (4)</td>
<td>14/600</td>
<td>17/600</td>
<td>0.82 [0.41, 1.66]</td>
<td>5.3%</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>898</td>
<td>903</td>
<td>0.87 [0.74, 1.02]</td>
<td>53.9%</td>
<td></td>
</tr>
<tr>
<td>Total events: 148 (IPT), 173 (Placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 1.75, df = 3 (P = 0.63); I² =0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.70 (P = 0.089)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (5)</td>
<td>100/136</td>
<td>89/136</td>
<td>1.12 [0.96, 1.32]</td>
<td>27.9%</td>
<td></td>
</tr>
<tr>
<td>Verhoef 2002 KEN (6)</td>
<td>60/82</td>
<td>58/82</td>
<td>1.03 [0.85, 1.25]</td>
<td>18.2%</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>218</td>
<td>218</td>
<td>1.09 [0.96, 1.23]</td>
<td>46.1%</td>
<td></td>
</tr>
<tr>
<td>Total events: 160 (IPT), 147 (Placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 0.43, df = 1 (P = 0.51); I² =0.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.36 (P = 0.17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1116</td>
<td>1121</td>
<td>0.97 [0.88, 1.07]</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Total events: 308 (IPT), 320 (Placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 7.07, df = 5 (P = 0.22); I² =29%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.59 (P = 0.55)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi² = 4.74, df = 1 (P = 0.03), I² =79%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intermittent preventive antimalarial treatment for children with anaemia (Review)

Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
(1) Tomasek 2001: IPT (SP monthly for three months) vs placebo; both groups received SP + mebendazole at baseline and folic acid plus iron three times a week.
(2) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.
(3) Verhoef 2002: IPT (SP) or placebo given monthly and iron twice per week for 12 weeks.
(4) Bojang 2010: All children were treated for malaria (quinine and SP; if Hb <5g/dl transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children.
(5) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks.
(6) Verhoef 2002: IPT (SP) or placebo given monthly.

Analysis 1.3. Comparison 1 IPT versus placebo, Outcome 3 Mean change in Hb (baseline to 12 weeks).

Comparison: IPT versus placebo

Outcome: Mean change in Hb (baseline to 12 weeks)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT</th>
<th>Placebo</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean(SD)</td>
<td>N</td>
<td>Mean(SD)</td>
<td>IV/Fixed,95% CI</td>
</tr>
<tr>
<td>1 Iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomasek 2001 TNZ (1)</td>
<td>73</td>
<td>3.5 (1.55)</td>
<td>77</td>
<td>3.6 (1.2)</td>
<td>8.6 %</td>
</tr>
<tr>
<td>Desai 2003 KEN (2)</td>
<td>129</td>
<td>1.57 (1.12)</td>
<td>127</td>
<td>1.12 (1.02)</td>
<td>24.9 %</td>
</tr>
<tr>
<td>Bojang 2010 GMB (3)</td>
<td>464</td>
<td>5.7 (1.54)</td>
<td>471</td>
<td>5.4 (1.6)</td>
<td>42.2 %</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>666</td>
<td>675</td>
<td>75.7 %</td>
<td>0.30 [0.15, 0.45]</td>
<td>**</td>
</tr>
<tr>
<td>2 No iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (4)</td>
<td>127</td>
<td>0.74 (1.23)</td>
<td>108</td>
<td>0.32 (1.12)</td>
<td>18.9 %</td>
</tr>
<tr>
<td>Cox 2013 GMB (5)</td>
<td>50</td>
<td>1.004 (1.19)</td>
<td>46</td>
<td>0.76 (1.59)</td>
<td>5.3 %</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>177</td>
<td>154</td>
<td>24.3 %</td>
<td>0.38 [0.12, 0.65]</td>
<td>**</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>843</td>
<td>829</td>
<td>100.0 %</td>
<td>0.32 [0.19, 0.45]</td>
<td>**</td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 4.35, df = 2 (P = 0.11); I² =54%
Test for overall effect: Z = 3.96 (P = 0.000075)

Heterogeneity: Chi² = 0.29, df = 1 (P = 0.59); I² =0.0%
Test for overall effect: Z = 2.81 (P = 0.0049)

Heterogeneity: Chi² = 4.89, df = 4 (P = 0.30); I² =18%
Test for overall effect: Z = 4.83 (P < 0.00001)
Test for subgroup differences: Chi² = 0.25, df = 1 (P = 0.62), I² =0.0%

Intermittent preventive antimalarial treatment for children with anaemia (Review)

Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
(1) Tomasek 2001: IPT (SP monthly for three months) vs placebo; both groups received SP + mebendazole at baseline and folic acid plus iron three times a week.
(2) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.
(3) Bojang 2010: All children were treated for malaria (quinine and SP, if Hb <5g/dL transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children.
(4) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks.
(5) Cox 2013: Chloroquine/placebo given weekly for 3 months. All children received malaria treatment at baseline.

Analysis 1.4. Comparison 1 IPT versus placebo, Outcome 4 Mean Hb at 12 weeks.

Review: Intermittent preventive antimalarial treatment for children with anaemia

Comparison: 1 IPT versus placebo

Outcome: 4 Mean Hb at 12 weeks

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT</th>
<th>Placebo</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean(SD)</td>
<td>N</td>
<td>Mean(SD)</td>
<td>IV,Random,95% CI</td>
</tr>
<tr>
<td>1 Iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bojang 2010 GMB (1)</td>
<td>464</td>
<td>10.8 (1.7)</td>
<td>471</td>
<td>10.6 (1.8)</td>
<td>23.4 %</td>
</tr>
<tr>
<td>Desai 2003 KEN (2)</td>
<td>129</td>
<td>11.05 (1.1)</td>
<td>127</td>
<td>10.7 (1)</td>
<td>22.4 %</td>
</tr>
<tr>
<td>Tomasek 2001 TNZ (3)</td>
<td>73</td>
<td>10.2 (1.74)</td>
<td>77</td>
<td>10.2 (1.34)</td>
<td>15.0 %</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>666</td>
<td>675</td>
<td>60.8 %</td>
<td>0.24 [0.08, 0.40]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.0; Chi^2 = 1.71, df = 2 (P = 0.42); I^2 =0.0%
Test for overall effect: Z = 2.91 (P = 0.0037)

2 No iron

	N	Mean(SD)	N	Mean(SD)	IV,Random,95% CI	IV,Random,95% CI
Cox 2013 GMB (4)	50	10.344 (0.96)	46	10.13 (1.02)	18.0 %	0.21 [-0.18, 0.61]
Desai 2003 KEN (5)	127	10.8 (1.2)	108	9.91 (1.1)	21.2 %	0.89 [0.60, 1.18]
Subtotal (95% CI)	**177**	**154**	**39.2 %**	**0.57 [-0.10, 1.23]**		

Heterogeneity: Tau^2 = 0.20; Chi^2 = 7.21, df = 1 (P = 0.01); I^2 =86%
Test for overall effect: Z = 1.67 (P = 0.095)

Total (95% CI) | **843** | **829** | **100.0 %** | **0.35 [0.06, 0.64]** |

Heterogeneity: Tau^2 = 0.08; Chi^2 = 16.93, df = 4 (P = 0.002); I^2 =76%
Test for overall effect: Z = 2.40 (P = 0.016)
Test for subgroup differences: Chi^2 = 0.89, df = 1 (P = 0.35), I^2 =0.0%

Intermittent preventive antimalarial treatment for children with anaemia (Review)

Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
(1) Bojang 2010: All children were treated for malaria (quinine and SP; if Hb <5g/dL transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children.

(2) Desai 2003: All participants received baseline dose of SP at enrollment; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.

(3) Tamashek 2001: IPT (SP monthly for three months) vs placebo; both groups received SP + mebendazole at baseline and folic acid plus iron three times a week.

(4) Cox 2013: Chloroquine/placebo given weekly for 3 months. All children received malaria treatment at baseline.

(5) Desai 2003: All participants received baseline dose of SP at enrollment; SP or placebo given at 4 and 8 weeks.

Analysis 2.1. Comparison 2 IPT in high versus low endemic areas, Outcome 1 All cause mortality plus hospital admissions at 6 months.

Comparison: 2 IPT in high versus low endemic areas.

Outcome: 1 All cause mortality plus hospital admissions at 6 months.

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT</th>
<th>Placebo</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
<th>Weight</th>
<th>Risk Ratio M-H,Fixed,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>High endemicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (1)</td>
<td>6/135</td>
<td>2/139</td>
<td>1.5 %</td>
<td>3.09 [0.63, 15.04]</td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (2)</td>
<td>1/136</td>
<td>4/136</td>
<td>3.1 %</td>
<td>0.25 [0.03, 2.21]</td>
<td></td>
</tr>
<tr>
<td>Phiri 2012 MWI (3)</td>
<td>91/706</td>
<td>101/708</td>
<td>77.7 %</td>
<td>0.90 [0.69, 1.18]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>977</td>
<td>983</td>
<td>82.3 %</td>
<td>0.92 [0.71, 1.19]</td>
<td></td>
</tr>
<tr>
<td>Total events: 98 (IPT), 107 (Placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Chi² = 3.64, df = 2 (P = 0.16); I² =45%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.64 (P = 0.52)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Low endemicity** |
| Bojang 2010 GMB (4) | 18/600 | 23/600 | 17.7 % | 0.78 [0.43, 1.44] |
| **Subtotal (95% CI)** | 600 | 600 | 17.7 % | 0.78 [0.43, 1.44] |
| Total events: 18 (IPT), 23 (Placebo) |
| Heterogeneity: not applicable |
| Test for overall effect: Z = 0.79 (P = 0.43) |

| **Total (95% CI)** |
|-------------------|-----|---------|-----------------------------|--------|-----------------------------|
| 116 (IPT), 130 (Placebo) |
| Heterogeneity: Chi² = 3.86, df = 3 (P = 0.28); I² =22% |
| Test for overall effect: Z = 0.92 (P = 0.36) |
| Test for subgroup differences: Chi² = 0.23, df = 1 (P = 0.63), I² =0.0% |

Heterogeneity: Chi² = 3.64, df = 2 (P = 0.16); I² =45%
Test for overall effect: Z = 0.64 (P = 0.52)

Analysis of data:

- **High endemicity**:
 - Desai 2003 KEN (1)
 - Desai 2003 KEN (2)
 - Phiri 2012 MWI (3)

- **Low endemicity**:
 - Bojang 2010 GMB (4)

Total events: 116 (IPT), 130 (Placebo)
Heterogeneity: Chi² = 3.86, df = 3 (P = 0.28); I² =22%
Test for overall effect: Z = 0.92 (P = 0.36)
Test for subgroup differences: Chi² = 0.23, df = 1 (P = 0.63), I² =0.0%
(1) Desai 2003: All participants received baseline dose of SP at enrolment; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.

(2) Desai 2003: All participants received baseline dose of SP at enrolment; SP or placebo given at 4 and 8 weeks.

(3) Phiri 2012: All children received treatment for severe malarial anaemia (transfusion and quinine) as well as six doses of artemether-lumefantrine (AL). IPT or placebo group received six doses at 1 and 2 months post discharge.

(4) Bojang 2010: All children were treated for malaria (quinine and SP; if Hb <5g/dL transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children

Analysis 2.2. Comparison 2 IPT in high versus low endemic areas, Outcome 2 Children with anaemia at 12 weeks.

Review: Intermittent preventive antimalarial treatment for children with anaemia

Comparison: 2 IPT in high versus low endemic areas

Outcome: 2 Children with anaemia at 12 weeks

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT n/N</th>
<th>Placebo n/N</th>
<th>Risk Ratio M-H,Fixed 95% CI</th>
<th>Weight M-H,Fixed 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 High endemicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (1)</td>
<td>56/135</td>
<td>61/139</td>
<td>18.9 % 0.95 [0.72, 1.24]</td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (2)</td>
<td>100/136</td>
<td>89/136</td>
<td>27.9 % 1.12 [0.96, 1.32]</td>
<td></td>
</tr>
<tr>
<td>Tomashek 2001 TNZ (3)</td>
<td>48/81</td>
<td>53/82</td>
<td>16.5 % 0.92 [0.72, 1.17]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>352</td>
<td>357</td>
<td>63.3 % 1.02 [0.90, 1.15]</td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>204 (IPT), 203 (Placebo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi² = 2.51, df = 2 (P = 0.29); I² = 20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.26 (P = 0.79)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Low endemicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bojang 2010 GMB (4)</td>
<td>14/600</td>
<td>17/600</td>
<td>5.3 % 0.82 [0.41, 1.66]</td>
<td></td>
</tr>
<tr>
<td>Verhoef 2002 KEN (5)</td>
<td>60/82</td>
<td>58/82</td>
<td>18.2 % 1.03 [0.85, 1.25]</td>
<td></td>
</tr>
<tr>
<td>Verhoef 2002 KEN (6)</td>
<td>30/82</td>
<td>42/82</td>
<td>13.2 % 0.71 [0.50, 1.02]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>764</td>
<td>764</td>
<td>36.7 % 0.89 [0.74, 1.07]</td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>104 (IPT), 117 (Placebo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi² = 3.92, df = 2 (P = 0.14); I² = 49%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.27 (P = 0.20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1116</td>
<td>1121</td>
<td>100.0 % 0.97 [0.88, 1.07]</td>
<td></td>
</tr>
<tr>
<td>Total events:</td>
<td>308 (IPT), 320 (Placebo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td>Chi² = 7.07, df = 5 (P = 0.22); I² = 29%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.59 (P = 0.55)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences:</td>
<td>Chi² = 1.43, df = 1 (P = 0.23), I² = 30%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Favours IPT | **Favours placebo**

Intermittent preventive antimalarial treatment for children with anaemia (Review)

Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
(1) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.

(2) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks.

(3) Tomashek 2001: IPT (SP monthly for three months) vs placebo; both groups received SP + mebendazole at baseline and folic acid plus iron three times a week.

(4) Bojang 2010: All children were treated for malaria (quinine and SP; if Hb <5g/dl transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children.

(5) Verhoef 2002: IPT (SP) or placebo given monthly.

(6) Verhoef 2002: IPT (SP) or placebo given monthly and iron twice per week for 12 weeks.

Analysis 2.3. Comparison 2 IPT in high versus low endemic areas, Outcome 3 Mean change in Hb (baseline to 12 weeks).

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT</th>
<th>Placebo</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>Heterogeneity: Chi²</th>
<th>df</th>
<th>P</th>
<th>Test for overall effect: Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>High endemicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (1)</td>
<td>129</td>
<td>1.12 (1.12)</td>
<td>24.9%</td>
<td>0.45 [0.19, 0.71]</td>
<td></td>
<td></td>
<td></td>
<td>Z = 3.78 (P = 0.00016)</td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (2)</td>
<td>127</td>
<td>0.32 (1.12)</td>
<td>18.9%</td>
<td>0.42 [0.12, 0.72]</td>
<td></td>
<td></td>
<td></td>
<td>Z = 3.78 (P = 0.00016)</td>
<td></td>
</tr>
<tr>
<td>Tomashek 2001 TNZ (3)</td>
<td>73</td>
<td>3.5 (1.55)</td>
<td>8.6%</td>
<td>-0.10 [-0.55, 0.35]</td>
<td></td>
<td></td>
<td></td>
<td>Z = 3.78 (P = 0.00016)</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>329</td>
<td>312</td>
<td>52.4%</td>
<td>0.35 [0.17, 0.53]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low endemicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bojang 2010 GMB (4)</td>
<td>464</td>
<td>5.4 (1.6)</td>
<td>42.2%</td>
<td>0.30 [0.10, 0.50]</td>
<td></td>
<td></td>
<td></td>
<td>Z = 3.78 (P = 0.00016)</td>
<td></td>
</tr>
<tr>
<td>Cox 2013 GMB (5)</td>
<td>50</td>
<td>0.76 (1.59)</td>
<td>5.3%</td>
<td>0.24 [-0.32, 0.81]</td>
<td></td>
<td></td>
<td></td>
<td>Z = 3.78 (P = 0.00016)</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>514</td>
<td>517</td>
<td>47.6%</td>
<td>0.29 [0.10, 0.48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.32 [0.19, 0.45]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis: Comparison of IPT versus placebo in high versus low endemic areas, Outcome: Mean change in Hb (baseline to 12 weeks).
(1) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.

(2) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks.

(3) Tomasek 2001: IPT (SP monthly for three months) vs placebo; both groups received SP + mebendazole at baseline and folic acid plus iron three times a week.

(4) Bojang 2010: All children were treated for malaria (quinine and SP; if Hb <5g/dL transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children

(5) Cox 2013: Chloroquine/placebo given weekly for 3 months. All children received malaria treatment at baseline

Analysis 2.4. Comparison 2 IPT in high versus low endemic areas, Outcome 4 Mean Hb at 12 weeks.

Review: Intermittent preventive antimalarial treatment for children with anaemia

Comparison: 2 IPT in high versus low endemic areas

Outcome: 4 Mean Hb at 12 weeks

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT N</th>
<th>Mean(SD)</th>
<th>Placebo N</th>
<th>Mean(SD)</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV/Random,95% CI</th>
<th>Mean Difference</th>
<th>IV/Random,95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>High endemicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (1)</td>
<td>127</td>
<td>10.8 (1.2)</td>
<td>108</td>
<td>9.91 (1.1)</td>
<td>21.2 %</td>
<td>0.89 [0.60, 1.18]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desai 2003 KEN (2)</td>
<td>129</td>
<td>11.05 (1.1)</td>
<td>127</td>
<td>10.7 (1)</td>
<td>22.4 %</td>
<td>0.35 [0.09, 0.61]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomasek 2001 TNZ (3)</td>
<td>73</td>
<td>10.2 (1.74)</td>
<td>77</td>
<td>10.2 (1.34)</td>
<td>15.0 %</td>
<td>0.0 [-0.50, 0.50]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>329</td>
<td></td>
<td>312</td>
<td></td>
<td></td>
<td>58.6 %</td>
<td>0.44 [-0.03, 0.91]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low endemicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bojang 2010 GMB (4)</td>
<td>464</td>
<td>10.8 (1.7)</td>
<td>471</td>
<td>10.6 (1.8)</td>
<td>23.4 %</td>
<td>0.20 [-0.02, 0.42]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox 2013 GMB (5)</td>
<td>50</td>
<td>10.34 (0.96)</td>
<td>46</td>
<td>10.13 (1.02)</td>
<td>18.0 %</td>
<td>0.21 [-0.18, 0.61]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>514</td>
<td></td>
<td>517</td>
<td></td>
<td></td>
<td>41.4 %</td>
<td>0.20 [0.01, 0.40]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>843</td>
<td></td>
<td>829</td>
<td></td>
<td></td>
<td>100.0 %</td>
<td>0.35 [0.06, 0.64]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.14; Ch² = 11.90, df = 2 (P = 0.003); I² =83%
Test for overall effect: Z = 1.84 (P = 0.065)

Heterogeneity: Tau² = 0.00; Ch² = 0.00, df = 1 (P = 0.96); I² =0.0%
Test for overall effect: Z = 2.04 (P = 0.042)

Heterogeneity: Tau² = 0.08; Ch² = 16.93, df = 4 (P = 0.002); I² =76%
Test for overall effect: Z = 2.40 (P = 0.016)
Test for subgroup differences: Ch² = 0.85, df = 1 (P = 0.36), I² =0.0%

Intermittent preventive antimalarial treatment for children with anaemia (Review)

Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
(1) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks.

(2) Desai 2003: All participants received baseline dose of SP at enrollement; SP or placebo given at 4 and 8 weeks. Iron given daily for 12 weeks to all participants.

(3) Tomashek 2001: IPT (SP monthly for three months) vs placebo; both groups received SP + mebendazole at baseline and folic acid plus iron three times a week.

(4) Bojang 2010: All children were treated for malaria (quinine and SP; if Hb <5g/dL transfusion); SP or placebo given monthly until end of transmission period. Iron given daily for 28 days to all children.

(5) Cox 2013: Chloroquine/placebo given weekly for 3 months. All children received malaria treatment at baseline.

Analysis 3.1. Comparison 3 IPT plus Vitamin A and C versus IPT in the presence of iron, Outcome 1
Children with anaemia at 12 weeks.

Review: Intermittent preventive antimalarial treatment for children with anaemia

Comparison: 3 IPT plus Vitamin A and C versus IPT in the presence of iron

Outcome: 1 Children with anaemia at 12 weeks

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT+VAC</th>
<th>IPT</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>Tomashek 2001 TNZ</td>
<td>41/65</td>
<td>48/73</td>
<td>100.0 %</td>
<td>0.96 [0.75, 1.23]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>65</td>
<td>73</td>
<td>100.0 %</td>
<td>0.96 [0.75, 1.23]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 41 (IPT+VAC), 48 (IPT)
Heterogeneity: not applicable
Test for overall effect: Z = 0.33 (P = 0.74)
Test for subgroup differences: Not applicable

Intermittent preventive antimalarial treatment for children with anaemia (Review)

Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 3.2. Comparison 3 IPT plus Vitamin A and C versus IPT in the presence of iron, Outcome 2 Mean change in Hb (baseline to 12 weeks).

Review: Intermittent preventive antimalarial treatment for children with anaemia

Comparison: 3 IPT plus Vitamin A and C versus IPT in the presence of iron

Outcome: 2 Mean change in Hb (baseline to 12 weeks)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT+VAC</th>
<th>IPT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean(SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV,Fixed,95% CI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomashek 2001 TNZ</td>
<td>65</td>
<td>3.5 (1.4)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>65</td>
<td>73</td>
</tr>
</tbody>
</table>

Heterogeneity: not applicable
Test for overall effect: Z = 0.0 (P = 1.0)
Test for subgroup differences: Not applicable

Analysis 3.3. Comparison 3 IPT plus Vitamin A and C versus IPT in the presence of iron, Outcome 3 Mean Hb at 12 weeks.

Review: Intermittent preventive antimalarial treatment for children with anaemia

Comparison: 3 IPT plus Vitamin A and C versus IPT in the presence of iron

Outcome: 3 Mean Hb at 12 weeks

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>IPT+VAC</th>
<th>IPT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean(SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV,Fixed,95% CI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomashek 2001 TNZ</td>
<td>65</td>
<td>10.1 (1.6)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>65</td>
<td>73</td>
</tr>
</tbody>
</table>

Heterogeneity: not applicable
Test for overall effect: Z = 0.36 (P = 0.72)
Test for subgroup differences: Not applicable
ADDITIONAL TABLES

Table 1. Summary of trial characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size (n randomized)</td>
<td>1200</td>
<td>96</td>
<td>554</td>
<td>1431</td>
<td>328</td>
<td>238</td>
</tr>
<tr>
<td>Country</td>
<td>The Gambia (Banjul)</td>
<td>The Gambia</td>
<td>Kenya (Western Kenya)</td>
<td>Malawi (southern Malawi)</td>
<td>Kenya (Eastern province)</td>
<td>Tanzania (Kigoma region)</td>
</tr>
<tr>
<td>Endemicity</td>
<td>low*</td>
<td>low*</td>
<td>high*</td>
<td>high*</td>
<td>low*</td>
<td>moderate/high (50% parasitaemia)**</td>
</tr>
<tr>
<td>Age</td>
<td>3 months to 9 years</td>
<td>12 to 72 months</td>
<td>2 to 36 months</td>
<td>4 to 59 months</td>
<td>2 to 36 months</td>
<td>6 to 59 months</td>
</tr>
<tr>
<td>Anaemia</td>
<td>Hb < 7 g/dL</td>
<td>Hb 69 to 110 g/dL</td>
<td>Hb 7.0 to 10.9 g/dL</td>
<td>All children treated for severe malarial anaemia with transfusion and completed the course of intravenous quinine with subsequent Hb > 5g/dL</td>
<td>Hb 60 to 110 g/dL</td>
<td>Hb 5.0 to 8.0 g/dL</td>
</tr>
<tr>
<td>Malaria</td>
<td>Not criteria for inclusion. Children with malaria were treated</td>
<td>Uncomplicated malaria</td>
<td>No malaria (aparasitaemic) or parasite counts < 20,000 parasites/mm³</td>
<td>Not described as part of eligibility</td>
<td>No clinical malaria</td>
<td>Not described as part of eligibility</td>
</tr>
<tr>
<td>Recruitment</td>
<td>Hospital or OPD admission</td>
<td>Active and passive case finding of children in community</td>
<td>Community: resident children screened</td>
<td>Hospital admissions</td>
<td>Community: randomly selected</td>
<td>Health care worker diagnosed children with clinical anaemia and referred them to the trial</td>
</tr>
<tr>
<td>Trial intervention</td>
<td>1. IPT (SP) 2. Placebo</td>
<td>1. IPT (CQ)</td>
<td>1. IPT (SP) + iron 2. IPT (SP) + iron placebo 3. Iron + IPT placebo 4. Iron placebo + IPT placebo</td>
<td>1. IPT(post discharge): AL 2. Placebo</td>
<td>1. IPT (SP) + iron 2. IPT (SP) + iron placebo 3. Iron + IPT placebo 4. Iron placebo + IPT placebo</td>
<td>1. Vitamin placebo 3X per week 2. Vitamin placebo + IPT (SP) 3. VAC + IPT (SP)</td>
</tr>
<tr>
<td>Iron and other supplementation during trial</td>
<td>Yes: oral iron for 28 days</td>
<td>No</td>
<td>No - part of trial intervention</td>
<td>Not reported</td>
<td>No - part of trial intervention</td>
<td>Yes: Iron and folic acid for</td>
</tr>
</tbody>
</table>
Table 1. Summary of trial characteristics (Continued)

| Baseline treatment for all participants | | | | 12 weeks |
|---|---|---|---|
| Some were treated with quinine and SP or CQ and SP. Not all children | Either CQ and SP or AL | Single dose of SP | None | Single dose of SP; mebendazole for participants > 12 months |

*endemicity derived from the Malaria Atlas Project (Gething 2011).
**as reported in the trial (Tomashek 2001 TNZ).

Abbreviations:
Hb: Haemoglobin
OPD: Out patient department
IPT: Intermittent preventive treatment
SP: Sulfadoxine-pyrimethamine
CQ: Chloroquine
AL: Arthemeter-lumefantrine
VAC: Vitamin A and C

Table 2. Summary of outcomes reported in trials

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Haematological outcomes</td>
<td>Mean Hb at end of follow-up</td>
<td>Mean Hb level at end of transmission period</td>
<td>-</td>
<td>Hb concentration (measured in g/dL)</td>
<td>-</td>
<td>Hb concentration at the end of follow-up (12 weeks)*</td>
<td>Mean Hb</td>
</tr>
<tr>
<td></td>
<td>Mean change of Hb from baseline to follow-up</td>
<td>-</td>
<td>Mean change of Hb from baseline to follow-up</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Children with anaemia at follow-up</td>
<td>Proportion of children with moderate or severe anaemia at the end of the transmission period*</td>
<td>-</td>
<td>Hematological recovery (Hb ≥ 11g/dL before or at week 12) Severe anaemia (Hb < 7 g/dL before or at week 12)</td>
<td>-</td>
<td>Anaemia (Hb < 11.0 g/dL)</td>
<td>Prevalence of anaemia (Hb < 11.0 g/dL)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of outcomes reported in trials (Continued)

<table>
<thead>
<tr>
<th>Other</th>
<th>Change in erythroid response</th>
<th>MCV (measured in fL) sTfR concentration (measured in µg/mL)</th>
<th>Iron deficiency (serum ferritin concentration < 12 µg/L)</th>
<th>Mean TfR level Prevalence of iron deficiency (TfR < 8.5 µg/mL)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Malaria outcomes</th>
<th>Clinical malaria</th>
<th>Clinical malaria (axillary temperature 37.5 with co-existing malaria parasitaemia)</th>
<th>Proportion of children with at least one malaria attack (defined as presence of fever, that is temperature ≥ 37.5°C, and a positive dipstick result)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria parasitaemia</td>
<td>Prevalence of parasitaemia and splenomegaly</td>
<td>Prevalence of submicroscopic malaria parasitaemia</td>
<td>Prevalence of malaria parasitaemia Parasite density (parasites/mm³)</td>
</tr>
</tbody>
</table>

| Hospital admissions or clinic visits related to malaria | - | - | - | - |

| Other | - | - | - | - |

| Time to first occurrence of malaria attack | - | - |

Intermittent preventive antimalarial treatment for children with anaemia (Review)
Copyright © 2015 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Table 2. Summary of outcomes reported in trials (Continued)

<table>
<thead>
<tr>
<th>All-cause mortality and hospital admission</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Composite outcome of all-cause mortality and hospital readmission because of all-cause severe anaemia or severe malaria between 1 and 6 months*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- All-cause hospital admission</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- All-cause mortality</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visits to healthcare facilities</th>
<th>Outpatient attendance</th>
<th>-</th>
<th>Clinic visits (incidence, number of episodes)</th>
<th>All-cause sick child clinic visits</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Nutritional status at the end of the transmission period</td>
<td>Change in urinary neopterin</td>
<td>-</td>
<td>-</td>
<td>Adverse drug reactions</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*indicates primary outcomes

Abbreviations:
Hb: haemoglobin
TfR: transferrin receptor
APPENDICES

Appendix 1. Search strategy

<table>
<thead>
<tr>
<th>Search set</th>
<th>CIDG SR(^1)</th>
<th>CENTRAL</th>
<th>MEDLINE(^2)</th>
<th>EMBASE(^2)</th>
<th>LILACS(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anemia OR anaemia</td>
<td>Anemia (MeSH, ti, ab)</td>
<td>Anemia (MeSH, ti, ab) OR anaemia (ti, ab)</td>
<td>Anemia (Emtree, ti, ab) OR anaemia (ti, ab)</td>
<td>Anemia OR anaemia</td>
</tr>
<tr>
<td>2</td>
<td>malaria</td>
<td>Malaria (MeSH, ti, ab)</td>
<td>Malaria (MeSH, ti, ab)</td>
<td>Malaria (Emtree, ti, ab)</td>
<td>malaria</td>
</tr>
<tr>
<td>3</td>
<td>Child* OR infant*</td>
<td>1 OR 2</td>
<td>1 OR 2</td>
<td>1 OR 2</td>
<td>Child$ OR infant$</td>
</tr>
<tr>
<td>4</td>
<td>(Intermittent Preventive treatment) OR IPT*</td>
<td>Child* OR infant*(ti, ab)</td>
<td>Child* OR infant*(ti, ab)</td>
<td>Child* OR infant*(ti, ab)</td>
<td>(Intermittent Preventive treatment) OR IPT$</td>
</tr>
<tr>
<td>5</td>
<td>1 or 2</td>
<td>3 and 4</td>
<td>3 and 4</td>
<td>3 and 4</td>
<td>1 or 2</td>
</tr>
<tr>
<td>6</td>
<td>3 and 4 and 5</td>
<td>(Intermittent preventive treatment) ti, ab</td>
<td>(Intermittent preventive treatment) ti, ab</td>
<td>(Intermittent preventive treatment) ti, ab</td>
<td>3 and 4 and 5</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>IPT*(ti,ab)</td>
<td>IPT*(ti,ab)</td>
<td>IPT*(ti,ab)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>6 or 7</td>
<td>6 or 7</td>
<td>6 or 7</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>5 and 8</td>
<td>5 and 8</td>
<td>5 and 8</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) Cochrane Infectious Diseases Group Specialized Register.
\(^2\) Search terms used in combination with the search strategy for retrieving trials developed by The Cochrane Collaboration (Lefebvre 2011).

CONTRIBUTIONS OF AUTHORS

MA, AR and AMK developed the protocol. MA and AR screened search outputs, selected trials for inclusion, extracted data, assessed risk of bias, analysed data and prepared the draft manuscript. AMK critically engaged with the manuscript and provided comments. All review authors have seen and approved the final manuscript.
DECLARATIONS OF INTEREST

The review authors have no known conflicts of interest.

SOURCES OF SUPPORT

Internal sources

• Centre for Evidence-based Health Care, Stellenbosch University, South Africa.
• Ifakara Health Institute, Tanzania.
• Liverpool School of Tropical Medicine, UK.

External sources

• Effective Health Care Research Consortium, UK.
• Department for International Development (DfID), UK.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

1. We planned to include only children under the age of five (as stated in protocol), but when screening the studies, we noticed that some of them included children up to the age of nine years and we thus decided to include all children.

2. In the protocol, we prespecified the following outcomes:

Primary outcomes:

• Mean Hb at follow-up (g/dL)
• Mean change in Hb from baseline at follow-up

Secondary outcomes:

• Complete recovery from severe anaemia (Hb > 5 g/dL)
• Complete recovery from moderate anaemia (Hb > 8 g/dL)
• Blood transfusions
• All-cause mortality
• Admission due to severe anaemia

During our fellowship (MK and AR) at the editorial base of the Cochrane Infectious Diseases Group (CIDG) in Liverpool, we discussed these outcomes with some of the CIDG editors. We also consulted Higgins 2011 and agreed that mortality and hospital admission would be more meaningful outcomes to clinicians and decision-makers, than mean Hb levels. We thus changed the primary and secondary outcomes to the following:

Primary outcomes:

• All-cause mortality and hospital admission

Secondary outcomes:

• Anaemia at follow-up (Hb < 11 g/dL)
• Mean change in Hb (g/dL) from baseline to follow-up
- Mean Hb at follow-up (g/dL)

3. We planned to perform the following subgroup analyses:

- IPTi versus IPTc
- Additional interventions to treat anaemia (such as, hematinics or folic acid)
- The use of LLINs or not

Due to the lack of heterogeneity and the limited amount of included trials, we only performed the following subgroup analyses:

- Additional interventions to treat anaemia (such as, hematinics or folic acid)
- Hospital recruitment versus community recruitment

4. Due to the limited number of trials included in the analyses, we did not do sensitivity analyses.

INDEX TERMS

Medical Subject Headings (MeSH)

Anemia [blood; etiology; *prevention & control]; Antimalarials [*therapeutic use]; Endemic Diseases [*prevention & control]; Hemoglobin A [metabolism]; Iron Compounds [administration & dosage]; Malaria [complications; *prevention & control]; Randomized Controlled Trials as Topic

MeSH check words

Child, Preschool; Humans; Infant; Infant, Newborn