Association of \textit{HLA-DRB1} genotype with younger age onset and elder age onset rheumatoid arthritis in Japanese populations

Shomi Oka, PhDa,b,c, Hiroshi Furukawa, MDa,b,c,*, Kota Shimada, MDd,e, Atsushi Hashimoto, MDd, Akiko Komiya, MDb,i, Shinichiro Tsunoda, MDd,j, Koichi Saiho, MDd, Naoyuki Tsuchiya, MDd, Masao Katayama, MDd, Satoshi Shinohara, MDd, Toshihiro Matsui, MDd, Naoshi Fukui, MDd, Hajime Sano, MDd, Kyosito Migitaka, MDm,n, Shigeto Tohma, MDa,c

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by joint destructions and human leukocyte antigen (HLA)-DRB1 is an important genetic risk factor for RA and influences the phenotype of RA. The clinical features of elder age onset RA (EORA) were known to be different from those of younger age onset RA (YORA). Previous studies reported the different association pattern of \textit{DRB1} alleles with YORA or EORA. The associations of \textit{DRB1} genotype with these RA subsets remained almost unknown. We investigated the genotype association of \textit{DRB1} with YORA or EORA in Japanese populations.

HLA genotyping was performed in Japanese RA patients and the association of allele or genotype carrier frequencies were analyzed.

The genotype frequency of \textit{DRB1}*04:05/\textit{DRB1}*04:06 (\(P=0.0204, OR 7.69, 95\% CI 1.39–42.72\)), \textit{DRB1}*04:05/\textit{DRB1}*12:01 (\(P=0.0050, OR 5.33, 95\% CI 1.71–17.88\)) and \textit{DRB1}*04:05/\textit{DRB1}*15:01 (\(P=0.0124, OR 3.34, 95\% CI 1.39–8.02\)) in YORA was
higher than EORA. However, the frequencies of DRB1*04:01/DRB1*04:05 in YORA was tended to be lower than EORA (P = .0784, OR 0.14, 95% CI 0.01–2.42). The gene dosage effect of the shared epitope alleles was detected in EORA, but not in YORA. Transcomplementing DQ heterodimer molecules, formed by DQA1 and DQB1 of the haplotypes with and without shared epitope alleles, might explain the higher genotype frequencies of “shared epitope /not shared epitope”. Linear regression analyses showed the primary role of DQB1*04:01 allele for the age at onset of RA.

This is the first report for the associations of DRB1 genotype with YORA or EORA in the Japanese population and the differential distribution of the genotypes was noted between these RA subsets. The involvement of DQ molecules for the age at onset of RA was suggested.

Abbreviations: CI = confidence interval, EORA = elder age onset RA, HLA = human leukocyte antigen, MORA = moderate age onset RA, OR = odds ratio, P = corrected P, PRC = partial regression coefficient, RA = rheumatoid arthritis, SE = shared epitope, YORA = younger age onset RA.

Keywords: elder age onset rheumatoid arthritis, genotype, HLA-DRB1, younger age onset rheumatoid arthritis

1. Introduction

Rheumatoid arthritis (RA) is an inflammatory disease characterized by structural destruction of cartilage and bone. RA patients produced specific auto-antibodies including anti-citrullinated peptide antibodies and rheumatoid factor. The specificity of anti-citrullinated peptide antibodies with RA is higher than that of rheumatoid factor. It was reported that the age at onset of RA had been increased in Japanese populations[1] and the clinical features of elder age onset RA (EORA) were different from those of younger age onset RA (YORA) on the gender distribution, the frequency of acute onset of RA, the involvement of large joints and extra-articular manifestations, the positivity of anti-citrullinated peptide antibody and rheumatoid factor.[2–7]

The etiology of RA is believed to be influenced by genetic and environmental factors. In particular, human leukocyte antigen (HLA)-DRB1 is one of the most important genetic risk factors for RA. Diverse DRB1 alleles are associated with RA in different ethnic populations. In Japanese populations, DRB1*04:05 is associated with RA[8] and DRB1*04:01 in European populations.[9] In the RA-associated DRB1 alleles, amino acid sequences at position 70 to 74 in the DRβ chain were conserved. These alleles were defined as the shared epitope (SE) alleles.[9] The homozygosity for the SE alleles conferred higher risk for the susceptibility of RA than the heterozygosity for them. This gene dosage effect was a distinctive feature of the SE alleles. Previous studies reported the different association pattern of DRB1 alleles with YORA or EORA. The gene dosage effect of the SE alleles was not confirmed in stratified analyses with the age at onset of RA.[10,11] DRB1*04 was strongly associated with YORA,[12,13] but the frequency of DRB1*04 was lower in EORA compared with YORA.[14–16] Moreover, DRB1*01 was associated with EORA.[13,16] However, the sample sizes of these studies were modest, the resolution of the genotyping methods used in these studies was lower and DRB1 genotype was not analyzed. Thus, larger scale studies on the association of DRB1 genotype with YORA or EORA should be conducted to validate these results. In the present study, we investigated the association of DRB1 genotype with Japanese YORA and EORA, using the genotyping methods with higher resolution.

2. Materials and methods

2.1. Materials

In this study, RA patients were recruited in Hyogo College of Medicine, Miyakonojo Medical Center, and Tochigi Rheumatology Clinic. The healthy individuals (n = 1026) were recruited in Kanazawa University, Sagamihara Hospital, Teikyo University, University of Tokyo or by Pharma SNP Consortium (Tokyo, Japan).[17,18] The patients and the healthy individuals were native Japanese living in Japan. All the patients fulfilled American College of Rheumatology criteria for RA[19] or Rheumatoid Arthritis Classification Criteria.[20] Anti-citrullinated peptide antibody was detected by Mesacup-2 test CCP (Medical & Biological Laboratories, Nagoya, Japan). Rheumatoid factor was measured by N-latex RF kit (Siemens Healthcare Diagnostics, Munchen, Germany). RA patients with age at onset lower than 30 years old and equal or higher than 16 were defined as YORA[21] to eliminate juvenile idiopathic arthritis. RA patients with age at onset lower than 60 years old and equal or higher than 30 years old were defined as moderate age onset RA (MORA) based on the distribution of age at onset in Japanese RA patients.[1] RA patients with age at onset equal or higher than 60 years old were defined as EORA.[16] Steinbrocker stage and class were evaluated to measure the disease progression and the activities of daily living of RA patients.[22]

This study was reviewed and approved by Hyogo College of Medicine Research Ethics Committee (178, 2012), Miyakonojo Medical Center Research Ethics Committee (approval number was not provided, 2009), Nagasaki Medical Center Research Ethics Committee (22081, 2010), Nagoya Medical Center Research Ethics Committee (2012–2014, 2012), Sagamihara National Hospital Research Ethics Committee (2009061621, 2009), University of Tsukuba Research Ethics Committee (250, 2015), and Tokyo National Hospital Research Ethics Committee (190010, 2019). Written informed consent was obtained from all the participants. This study was conducted in accordance with the principles expressed in the Declaration of Helsinki.

2.2. Genotyping

HLA genotyping was performed by the polymerase chain reaction with sequence-specific oligonucleotide probes (WAKFlow HLA typing kits, Wakanaga, Akitakata, Japan), using Bio-Plex system (Bio-Rad, Hercules, CA). DRB1*01:01, DRB1*04:01, DRB1*04:04, DRB1*04:05, DRB1*04:10, DRB1*10:01, DRB1*14:02, and DRB1*14:06 were included in the SE alleles.[19] Genotyping results for some of the RA patients and the healthy controls were reported in previous studies.[8,23]
2.3. Statistical analysis

Differences of demographic features of RA patients were analyzed by Fisher exact test using 2X2 contingency tables. Associations of HLA-DRB1 allele carrier frequencies, genotype frequencies, or amino acid residue carrier frequencies were tested by Fisher exact test using 2X2 contingency tables. Simple linear regression analyses under the additive model were conducted to analyze whether each allele contributes to the age at onset of RA. The deviation from zero was tested for partial regression coefficient (PRC) and P values were calculated. Alleles with PRC more than 0 contribute to increase the age at onset of RA and alleles with PRC less than 0 decrease. Multiple linear regression analyses of an allele were performed to identify the independent association of the allele from another allele. The deviation from zero was tested for PRC of an allele and P values were calculated, when conditioned on another allele. Multiple comparisons were corrected by Bonferroni method; the corrected P (Pc) values were obtained by multiplying the P values by the number of alleles or amino acid residues tested.

3. Results

3.1. Demographic features of YORA and EORA

The characteristics of the RA patients were shown in Table 1. Eighty-nine patients were defined as YORA, 714 as MORA, and 329 as EORA. The ratio of male was higher in EORA than YORA. Steinbrocker stage and class were higher in YORA than EORA. The ratio of male was higher in EORA than in YORA. The mean age, years (SD) were 50.1 (15.3) in YORA, 61.5 (10.1) in MORA, and 72.4 (5.9) in EORA, NA in YORA.

3.2. HLA-DRB1 allele carrier frequency in YORA and EORA

HLA genotyping was performed to compare allele carrier frequency (Table 2, Supplementary Table S1, http://links.lww.com/MD/D419). DRB1∗04:01 was associated with the susceptibility of EORA (P = 0.0004, Pc = 0.0119, odds ratio [OR] 3.11, 95% confidence interval [CI] 1.69–5.73). DRB1∗04:05 was associated with the susceptibility of YORA (P = 8.33 × 10⁻¹⁴, Pc = 2.42 × 10⁻¹², OR = 5.47, 95% CI 3.47–8.61), MORA (P = 1.02 × 10⁻³⁸, OR = 3.15 × 10⁻³⁰, OR = 3.35, 95% CI 2.73–4.12), and EORA (P = 2.45 × 10⁻¹², Pc = 7.11 × 10⁻¹¹, OR = 2.37, 95% CI 1.98–3.34), compared with the controls. Furthermore, the allele carrier frequency of DRB1∗01:01 in YORA was tended to be lower than EORA and that of DRB1∗04:05 in YORA was tended to be higher than EORA. The association pattern of DRB1 allele carrier frequency in MORA was similar to that of RA per se.[8] Thus, the association pattern of YORA with DRB1 alleles was different from that of EORA.

3.3. HLA-DRB1 genotype frequency in YORA and EORA

The DRB1 genotype frequencies in the RA patients were analyzed (Table 3, Supplementary Table S2, http://links.lww.com/MD/D420). The genotype frequencies of DRB1∗04:01/DRB1∗04:05 (YORA: P = 0.0179, OR = 2.35, 95% CI 2.12–2.62, EORA: P = 0.0111, OR = 19.04, 95% CI 2.28–158.74) and DRB1∗04:05/DRB1∗04:05/DRB1∗04:05/DRB1∗04:05 (YORA: P = 0.028, OR = 3.38, 95% CI 1.62–7.06, EORA: P = 0.014, OR = 2.39, 95% CI 1.43–3.99) were increased in both YORA and EORA, compared with the controls. The genotype frequency of DRB1∗04:05/DRB1∗12:01 (P = 0.0004, OR = 7.21, 95% CI 2.76–18.82) was increased in YORA, compared with the controls, but not in EORA. The frequencies of DRB1∗01:01/DRB1∗04:05 (P = 0.064, OR = 3.20, 95% CI 1.42–7.19) and DRB1∗04:05/DRB1∗12:01 (P = 0.0047, OR = 2.71, 95% CI 1.38–5.33) were increased in EORA, compared with the controls, but not in YORA. Furthermore, the frequency of DRB1∗04:05/DRB1∗04:06 (P = 0.0204, OR = 7.69, 95% CI 1.39–42.72), DRB1∗04:05/DRB1∗12:01 (P = 0.0050, OR = 5.53, 95% CI 1.71–17.88), and DRB1∗04:05/DRB1∗15:01 (P = 0.0124, OR = 3.34, 95% CI 1.39–8.02) in YORA was higher than EORA. However, the frequencies of DRB1∗01:01/DRB1∗04:05 in YORA was tended to be lower than EORA (P = 0.0784, OR = 0.14, 95% CI 0.01–2.42). The homozygosity for the SE alleles conferred higher risk for EORA than the heterozygosity (SE/not SE: P = 2.65X10⁻¹⁴, OR = 2.88, 95% CI 2.18–3.79, SE/SE: OR = 2.18X10⁻¹³, OR = 5.47, 95% CI 3.52–8.50), though this gene dosage effect was not observed in YORA (SE/not SE: P = 3.35X10⁻¹⁰, OR = 4.70, 95% CI 2.81–7.86, SE/SE: P = 0.0007, OR = 4.92, 95% CI 2.15–11.29). The association pattern of DRB1 genotype frequency in MORA was similar to those of YORA or EORA. Thus, the association pattern of YORA with DRB1 genotypes was different from that of EORA.

3.4. Associations of amino acid residues in the HLA-DRB1 chain with YORA and EORA

The associations of amino acid residues in the HLA-DRB1 chain with RA were shown in Figure 1. Tyrosine at position 37 (37Y, OR = 2.48, 95% CI 1.42–4.27) and aspartic acid at position 70 (70D) were not associated with YORA (Fig. 1A), but not with EORA (Fig. 1C). On the other hand, leucine at position 67 (67L) and aspartic acid at position 70 (70D) were not associated with EORA.

Table 1

<table>
<thead>
<tr>
<th>Characteristics of RA patients.</th>
<th>YORA</th>
<th>MORA</th>
<th>EORA</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>89</td>
<td>714</td>
<td>329</td>
<td>NA</td>
</tr>
<tr>
<td>Mean age, years (SD)</td>
<td>50.1 (15.3)</td>
<td>61.5 (10.1)</td>
<td>72.4 (5.9)</td>
<td>NA</td>
</tr>
<tr>
<td>Age at onset (SD)</td>
<td>25.7 (3.6)</td>
<td>46.9 (8.1)</td>
<td>67.3 (2.5)</td>
<td>NA</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>10 (19)</td>
<td>116 (16.4)</td>
<td>88 (26.8)</td>
<td>.0018</td>
</tr>
<tr>
<td>Steinbrocker stage III and IV, n (%)</td>
<td>69 (77.5)</td>
<td>396 (55.5)</td>
<td>88 (26.8)</td>
<td>5.03X10⁻¹⁸</td>
</tr>
<tr>
<td>Steinbrocker class 3 and 4, n (%)</td>
<td>27 (30.3)</td>
<td>110 (15.4)</td>
<td>51 (15.5)</td>
<td>.0032</td>
</tr>
<tr>
<td>Rheumatoid factor positive, n (%)</td>
<td>75 (84.3)</td>
<td>611 (85.6)</td>
<td>271 (82.4)</td>
<td>.7532</td>
</tr>
<tr>
<td>Anti-citrullinated peptide antibody positive, n (%)</td>
<td>78 (87.6)</td>
<td>639 (89.5)</td>
<td>280 (85.1)</td>
<td>.6126</td>
</tr>
</tbody>
</table>

Association was tested between YORA and EORA by Fisher exact test using 2X2 contingency tables.

YORA = younger age onset RA, MORA = moderate age onset RA, NA = not applicable, RA = rheumatoid arthritis, YORA = younger age onset RA.
Table 2

<table>
<thead>
<tr>
<th>HLA-DRB1 allele carrier frequency in RA patients and the controls.</th>
<th>YORA vs control</th>
<th>MORA vs control</th>
<th>EORA vs control</th>
<th>Control</th>
<th>YORA vs EORA</th>
<th>YORA vs MORA</th>
<th>MORA vs EORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR 95%CI</td>
<td>OR 95%CI</td>
<td>OR 95%CI</td>
<td>OR 95%CI</td>
<td>OR 95%CI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YORA (n=42)</td>
<td>4.15</td>
<td>0.026</td>
<td>0.39</td>
<td>0.14-1.08</td>
<td>1.02 (1.43)</td>
<td>0.305 (1.39)</td>
<td>0.9468 (0.54-1.58)</td>
</tr>
<tr>
<td>MORA (n=71)</td>
<td>7.05</td>
<td>0.006</td>
<td>0.90</td>
<td>0.17-3.79</td>
<td>0.52 (3.73)</td>
<td>3.57 (1.05)</td>
<td>3.58 (1.08-5.56)</td>
</tr>
<tr>
<td>EORA (n=31)</td>
<td>14.64</td>
<td>0.001</td>
<td>3.11</td>
<td>0.019</td>
<td>0.99 (6.78)</td>
<td>22 (0.31)</td>
<td>0.39 (0.12-1.41)</td>
</tr>
<tr>
<td>Control</td>
<td>0.007</td>
<td>0.28</td>
<td>0.90</td>
<td>0.057</td>
<td>0.89 (0.31-2.44)</td>
<td>0.32 (1.16)</td>
<td>1.07 (0.34-3.46)</td>
</tr>
<tr>
<td>YORA vs EORA</td>
<td>2.46 (1.05)</td>
<td>2.57 (1.11)</td>
<td>0.75 (0.4-1.37)</td>
<td>1.48 (0.44)</td>
<td>0.007 (0.08-0.88)</td>
<td>0.039 (0.12)</td>
<td>0.91 (0.33-2.98)</td>
</tr>
<tr>
<td>YORA vs MORA</td>
<td>1.09 (1.04-1.85)</td>
<td>54.00 (5.4-1.01)</td>
<td>0.73 (0.6-1.3)</td>
<td>0.004 (0.004)</td>
<td>0.24 (0.08-0.66)</td>
<td>0.003 (0.01)</td>
<td>0.91 (0.33-2.98)</td>
</tr>
<tr>
<td>MORA vs EORA</td>
<td>0.007 (0.08-0.88)</td>
<td>0.039 (0.12)</td>
<td>0.91 (0.33-2.98)</td>
<td>0.004 (0.004)</td>
<td>0.24 (0.08-0.66)</td>
<td>0.003 (0.01)</td>
<td>0.91 (0.33-2.98)</td>
</tr>
</tbody>
</table>

Allele carrier frequencies are shown in parenthesis (%). Association was tested with the control by Fisher's exact test using 2x2 contingency tables. RA = rheumatoid arthritis, YORA = younger age onset RA, MORA = moderate age onset RA, EORA = elder age onset RA, OR = odds ratio, CI = confidence interval, Pc = corrected P-value, NS = not significant, SE = Shared epitope.
with YORA (Fig. 1A), though these amino acid residues were associated with EORA (Fig. 1C, 67L: P = 3.20X10^{-6}, OR = 2.19, Pc = 1.10X10^{-6}, 95% CI 1.65–2.92, 70D: P = 1.50X10^{-8}, OR = 0.48, Pc = 5.12X10^{-7}, 95% CI 0.37–0.62). The association pattern of MORA (Fig. 1B) was similar to that of RA per se.\[8\] Thus, the association pattern of YORA with amino acid residues in the DRβ chain was different from that of EORA.

3.5. Linear regression analysis of HLA alleles for the age at onset of RA

Simple linear regression analyses of HLA alleles were conducted to reveal the effects of alleles for the age at onset of RA (Table 4, Supplementary Table S3, http://links.lww.com/MD/D421). DQB1*04:01 was associated with the age at onset of RA (P = .0005, Pc = 0.0079, PRC = 2.36), though some other alleles were also tended to be associated (Table 4). The haplotype including B*44:03, DRB1*13:02, DQB1*06:04, and DPB1*04:01 was known\[24\], DRB1*01:01 and DQB1*05:01 were in strong linkage disequilibrium in Japanese populations.\[25\] DRB1*04:05, DQB1*04:01, and DPB1*02:01 were also included in the other haplotype.\[25\] Multiple linear regression analyses of HLA alleles were performed to identify the independent association of these alleles for the age at onset of RA (Supplementary Table S4, http://links.lww.com/MD/D422).

The significant association of B*44:03, DRB1*13:02, DQB1*06:04, and DPB1*04:01 was disappeared, when conditioned on each allele. These findings supported the strong linkage disequilibrium in the haplotype and the primary allele could not be detected in this analysis. The association of DQB1*04:01 still remained significant (P = .0081, PRC = 4.89), when conditioned on DRB1*04:05, suggesting the independent association of DQB1*04:01 from DRB1*04:05. However, the association of DRB1*04:05 was not detected (P = .1403, PRC = 2.83), when conditioned on DQB1*04:01, suggesting the dependent effects of DRB1*04:05 on DQB1*04:01. These data suggested the primary role of DQB1*04:01 for the age at onset of RA. The association of DRB1*04:05 (P = .0044, PRC = 2.02) and DQB1*04:01 (P = .0003, PRC = 2.44) still remained significant, when conditioned on DPB1*02:01. The association of DPB1*02:01 still remained significant, when conditioned on DRB1*04:05 (P = .0051, PRC = 1.86) or DQB1*04:01 (P = .0052, PRC = 1.85). These data suggested the independent association of DPB1*02:01 form DQB1*04:01. The significant association of DRB1*01:01 and DQB1*05:01 was disappeared, when conditioned on each allele. These also suggested the strong linkage disequilibrium between DRB1*01:01 and DQB1*05:01 and the primary allele could not be detected in the analysis. Thus, some HLA haplotypes or alleles were detected to be responsible for the age at onset of RA.

![Figure 1. Associations of amino acid residues in the DRβ chain with YORA (A), MORA (B), and EORA (C). Associations were established by Fisher exact test using 2X2 contingency tables. Corrected P (Pr) values were calculated by multiplying the P value by the number of amino acid residues tested. Positive associations are indicated by filled circles and negative associations by open circles. RA = rheumatoid arthritis, YORA = younger age onset RA, MORA = moderate age onset RA, EORA = elder age onset RA.](http://links.lww.com/MD/D422)
and DQB1 of the haplotypes with and without SE, might explain the higher genotype frequencies of “SE/not SE”, as proposed in the studies on other diseases.[13,24] The primary effect of DQB1∗04:01 for the age at onset of RA detected in the multiple linear regression analyses also support the role of DQ molecules. The frequencies of DRB1∗01:01/DRB1∗04:05, DRB1∗04:01/ DRB1∗04:05, DRB1∗04:05/DRB1∗09:01, and DRB1∗04:05/DRB1∗15:01 were increased in EORA (Table 3). In these genotypes increased in EORA, all the genotypes except DRB1∗04:05/DRB1∗09:01 and DRB1∗04:05/ DRB1∗15:01 were “SE/SE”. These results suggested the important roles of the homozygous genotypes of “SE/SE” in the susceptibility of EORA and interpreted the gene dosage effect of the SE alleles in EORA. Thus, the differential distribution of the genotypes including DRB1∗04:05 were noted between YORA and EORA, suggesting the different pathogenesis in YORA from EORA.

The amino acid residues of 11V, 13H, 33H, 57S, and 96Y in the DRβ chain were associated with both of YORA and EORA (Fig. 1A and 1C). The predominant roles of DRB1∗04:05 on the susceptibility of YORA and EORA could account for the results. However, leucine at position 67 (67L) was associated with EORA, but not with YORA, suggesting the effects of DRB1∗01:01 allele on EORA. Similarly, DRB1∗12:01 might explain that aspartic acid at position 70 (70D) was not associated with YORA. Additionally, tyrosine at position 37 (37Y) was associated with YORA, but not with EORA, supported by the higher frequency of DRB1∗04:05 in YORA. Some HLA alleles were predicted to be selected in the pathogen-driven manner.[24,35] Analogically, SE alleles would be selected in the similar manner, increasing the susceptibility of YORA.

Linear regression analyses revealed the role of some HLA haplotypes or alleles for the age at onset of RA. Because of the strong linkage disequilibrium of HLA region, it is difficult to identify the primary role of the responsible allele for the age at onset of RA. DQB1∗04:01 was the sole significantly associated allele with the age at onset of RA in simple linear regression analyses. In multiple linear regression analyses, the association of DQB1∗04:01 still remained significant, when conditioned on DRB1∗04:05. However, the association of DRB1∗04:05 was not detected, when conditioned on DQB1∗04:01. Thus, the results of the multiple linear regression analyses showed the primary role of DQB1∗04:01 for the age at onset of RA, suggesting the involvement of DQ molecules on the age at onset. It is possible that other HLA loci than DRB1 might contribute to the age at onset of RA. However, this primary association of DQB1∗04:01 should be confirmed in future replication studies, as DQA1 is a risk factor for RA in Chinese populations.[36] The association of DRB1 genotypes with YORA and EORA should also be validated in larger scale studies, because of the limited sample size of this study. Since the distribution pattern of DRB1 is different in other ethnic populations, DRB1 genotypes of YORA and EORA should be investigated in other populations.

In the present study, it was revealed that the association pattern of DRB1 genotype was widely different between YORA and EORA. The genotype frequencies of DRB1∗04:05/DRB1∗15:01 and DRB1∗04:05/DRB1∗12:01 were increased in YORA. On the other hand, the frequencies of DRB1∗01:01/DRB1∗04:05 and DRB1∗04:05/DRB1∗04:05 were increased in EORA. The gene dosage effect of the SE alleles was detected in EORA, but not observed in YORA.

Table 4

| Linear regression analysis of HLA alleles for the age at onset of RA. |
|-----------------|-------|-----------------|---------|---------|
| HLA allele | PRC | 95%CI | P | Pc |
| B∗15:07 | 11.41 | (2.16–20.65) | 0.056 | 0.5937 |
| B∗44:03 | 3.02 | (0.35–5.69) | 0.265 | NS |
| B∗67:01 | 9.69 | (3.61–15.76) | 0.018 | 0.0683 |
| DRB1∗01:01 | 2.44 | (0.41–4.67) | 0.031 | 0.9205 |
| DRB1∗03:01 | 26.56 | (−46.10–7.02) | 0.078 | 0.2251 |
| DRB1∗04:05 | −1.90 | (−3.29–0.51) | 0.074 | 0.2151 |
| DRB1∗04:06 | −6.83 | (−8.82–0.83) | 0.179 | 0.5202 |
| DRB1∗13:02 | 3.59 | (0.62–6.55) | 0.177 | 0.5138 |
| DQB1∗04:01 | 2.36 | (−2.70–−1.03) | 0.005 | 0.0077 |
| DQB1∗05:01 | 2.48 | (0.45–4.50) | 0.168 | 0.2520 |
| DQB1∗06:04 | 3.16 | (0.12–6.19) | 0.041 | 0.6236 |
| DPB1∗02:01 | 1.75 | (−3.05–0.45) | 0.085 | 0.1357 |
| DPB1∗04:01 | 3.15 | (0.02–6.28) | 0.046 | 0.7781 |

Association for age at onset of RA was tested by linear regression analysis. mCI=confidence interval, NS=not significant, P=corrected P value, PRC=partial regression coefficient.
5. Conclusion
To the best of our knowledge, this is the first report for these associations of DRB1 genotype with these RA subsets in the Japanese population and the differentially associated DRB1 genotypes were detected between these subsets. Although accumulated genetic risk factors were thought to cause autoimmune diseases in younger age, our results suggested that different genetic risk factors contribute to the pathogenesis of YORA from EORA. The involvement of DQ molecules on the age at onset of RA was suggested.

Acknowledgments
We thank Ms. Mayumi Yokoyama and Ms. Satomi Hanawa (Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital) for secretarial assistance.

Author contributions
Conceptualization: Hiroshi Furukawa, Shigeto Tohma.
Data curation: Shomi Oka, Hiroshi Furukawa.
Formal analysis: Shomi Oka, Hiroshi Furukawa.
Funding acquisition: Hiroshi Furukawa, Atsushi Hashimoto, Shigeto Tohma.
Investigation: Shomi Oka, Hiroshi Furukawa.
Methodology: Shomi Oka.
Supervision: Kiyoshi Migita, Shigeto Tohma.
Validation: Shomi Oka, Hiroshi Furukawa.
Visualization: Shomi Oka, Hiroshi Furukawa.
Writing – original draft: Shomi Oka.
Writing – review & editing: Hiroshi Furukawa, Shigeto Tohma.

References

www.md-journal.com