The uric acid crystal receptor Clec12A potentiates type I interferon responses

Kai Li^a,b, Konstantin Neumann^c, Vikas Duhan^d, Sukumar Naminieni^c, Anne Louise Hansen^e, Tim Wartewig^c, Zsuzsanna Kurgyis^f, Christian K. Holm^g, Matthias Heikenwalder^h,i,j, Karl S. Lang^d, and Jürgen Ruland^b,h,1

1Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; 2German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany; 3Institut für Klinische Chemie, Medizinische Hochschule Hannover, 30625 Hannover, Germany; 4Institut für Immunologie, Universitätsklinikum Essen, Universität Duisburg-Essen, 45147 Essen, Germany; 5Institut für Virologie, Technische Universität München/Helmholtz Zentrum München, 81675 Munich, Germany; 6Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; 7Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; and 8German Cancer Consortium (DKTK), 69120 Heidelberg, Germany

Edited by Michael Karin, University of California San Diego School of Medicine, La Jolla, CA, and approved August 5, 2019 (received for review December 17, 2018)

The detection of microbes and damaged host cells by the innate immune system is essential for host defense against infection and tissue homeostasis. However, how distinct positive and negative regulatory signals from immune receptors are integrated to tailor specific responses in complex scenarios remains largely undefined. Clec12A is a myeloid cell-expressed inhibitory C-type lectin receptor that can sense cell death under sterile conditions. Clec12A detects uric acid crystals and limits proinflammatory pathways by counteracting the cell-activating spleen tyrosine kinase (Syk). Here, we surprisingly find that Clec12A additionally amplifies type I interferon (IFN-I) responses in vivo and in vitro. Using retinoic acid-inducible gene I (RIG-I) signaling as a model, we demonstrate that monosodium urate (MSU) crystal sensing by Clec12A enhances cytosolic RNA-induced IFN-I production and the subsequent induction of IFN-I-stimulated genes. Mechanistically, Clec12A engages Src kinase to positively regulate the TBK1-IRF3 signaling module. Consistently, Clec12A-deficient mice exhibit reduced IFN-I responses upon lymphocytic choriomeningitis virus (LCMV) infection, which affects the outcomes of these animals in acute and chronic virus infection models. Thus, our results uncover a previously unrecognized connection between an MSU crystal-sensing receptor and the IFN-I response, and they illustrate how the sensing of extracellular damage-associated molecular patterns (DAMPs) can shape the immune response.

Clec12A | type I interferon | C-type lectin receptor | TBK1-IRF3 signaling | LCMV

Innate immune cells express germline-encoded pattern recognition receptors (PRRs) to sense immunological cues from microbes and stressed/dying host cells. Once activated, these PRRs engage intracellular signaling pathways that cooperatively control the production of immune effector molecules, such as inflammatory cytokines and interferons, to tune the host defense mechanisms against the specific invading pathogens, while at the same time limiting unwanted immunopathology (1, 2). Signaling PRRs expressed on myeloid cells include the transmembrane Toll-like receptors (TLRs) and C-type lectin receptors, as well as intracellular receptors, such as nucleic acid sensors, nod-like receptors, and inflammasomes (3). While the individual signaling cascades that are activated by these PRRs have been comprehensively dissected during the last 2 decades (3), the crosstalk between these pathways and the integration of the signals after pathogen detection and upon cell death sensing remain ill-defined.

C-type lectin receptors (CLRs) represent one important PRR family of innate immune cells and recognize both pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs) (4). Based on their intracellular signaling modules, CLRs are broadly grouped into activating and inhibitory receptors (5). Activating CLRs include Dectin-1, Dectin-2, or Mincle, which utilize immunoreceptor tyrosine-based activation motifs (ITAMs) for intracellular signaling. Following their ligation, membrane-associated Src family kinases (SFKs) (6) are first activated and phosphorylate receptor-associated phosphatases, such as SHP-1 and SHP-2, which counteract Syk to negatively modulate cellular activation (8).

Clec12A (also known as MICL, CLL-1, or DCAL-2) is a prototypic ITIM-containing CLR that is predominantly expressed on myeloid cells (9, 10). Earlier studies have demonstrated that Clec12A couples to SHP-1 and SHP-2 after SFK-mediated ITIM phosphorylation (9). Moreover, recent work identified Clec12A as a specific receptor for the detection of cell death under sterile conditions (11). Specifically, uric acid (monosodium urate, MSU) crystals, which are potent DAMPs that alert the immune system to cell death, are Clec12A agonists (11). Consistent with its negative regulatory role in inflammatory pathways, Clec12A can limit the production of immune effector molecules, such as type I interferon, tumor necrosis factor (TNF), and interleukins (IL-1β, IL-6) (12). This inhibitory function is most likely mediated by tyrosine phosphatases, such as SHP-1 and SHP-2, which negatively modulate cellular activation (8).

Author contributions: K.L., K.N., and J.R. designed research; K.L., K.N., V.D., and S.N. performed research and analyzed data; A.L.H. and C.K.H. provided key information for the in vivo experiments; T.W. provided expertise on the RNA-sequencing data analysis; M.H., K.S.L., and J.R. supervised animal experiments; and K.L., K.N., Z.K., and J.R. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The RNA-seq data have been uploaded to the GEO database (accession no. GSE134082).

1To whom correspondence may be addressed. Email: j.ruland@tum.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821351116/-/DCSupplemental.

Published online August 26, 2019.
sterile inflammation by dampening Syk-mediated reactive oxygen species (ROS) production and by preventing the overproduction of proinflammatory cytokines and chemokines, such as tumor necrosis factor (TNF) and CXCL1 (11). In addition, Clec12A has important negative regulatory functions in collagen antibodies-induced arthritis, which is another model of sterile inflammation (12). However, the biological functions of Clec12A signaling during infection, which is frequently associated with host cell injury, remain unclear.

The type I IFN (IFN-I) response represents a pivotal defensive mechanism against viral infection. During virus replication, viral nucleic acids are exposed within the host cell and serve as PAMPs that are detected by nucleic acid-sensing PRRs, such as RIG-I, MDA-5, cGAS, TLR3, and TLR7, to induce IFN-I production (13). Subsequently, the binding of IFN-I to the IFN-I receptor (IFNAR) initiates the transcription of IFN-stimulated genes (ISGs) with different effector functions depending on the immunological context (14). Most ISGs exert direct antiviral effects. However, some ISGs, such as programmed death-ligand 1 (PD-L1), counteract the antiviral immune responses during chronic viral infections (15, 16), necessitating the fine-tuning of the IFN-I response. Whereas most viral nucleic acid-sensing pathways induce IFN-I production by engaging the Tank-binding kinase 1 (TBK1)-IFN regulatory factor 3 (IRF3) signaling module (17), it remains unclear how the immunological context in the environment can modulate the IFN-I response.

Here, we surprisingly observed that the uric acid crystal receptor Clec12A functions as a positive modulator of the IFN-I response, which amplifies nucleic acid-sensing PRR signals through the TBK1-IRF3 axis. Furthermore, we report that Clec12a−/− mice exhibit increased susceptibility to acute lymphocytic choriomeningitis virus (LCMV) infection and improved virus clearance during chronic LCMV infection in vivo. These results provide insights into the interplay of cell death receptors and IFN-signaling pathways during infection and reveal a previously unrecognized positive regulatory role of an ITIM-containing CLR for IFN-I production.

Results
Clec12A Positively Regulates the Expression of IFN-I-Stimulated Genes. To explore the functions of Clec12A in sterile inflammation, we induced noninfectious cell death in the mouse thymus via X-ray irradiation in vivo (11). Clec12A ligands will be exposed in such a model either directly by dead thymocytes or due to the resultant inflammation. We observed that the expression of proinflammatory chemokines and cytokines in the thymus was up-regulated in the absence of Clec12A, consistent with the inhibitory role of Clec12A during sterile inflammation (11, 12). In these experiments, we additionally observed substantial decreases in Ifit3 and Irf7 expression in the irradiated thymi of Clec12a−/− mice (Fig. 1A). Because both Ifit3 and Irf7 are strongly induced by IFN-I (14), we became interested in putative functions of Clec12A in regulating the IFN-I response.

As indicated above, IFN-I is strongly induced after cytosolic nucleic acid sensing and is particularly important during viral infection. Therefore, we next investigated potential crosstalks between Clec12A and the RIG-I signaling pathway. To this end, we utilized bone marrow-derived dendritic cells (BMDCs), which are strongly induced by IFN-I (14), we became interested in the interplay of cell death receptors and IFN-signaling pathways during infection and reveal a previously unrecognized positive regulatory role of an ITIM-containing CLR for IFN-I production.

Results
Clec12A Positively Regulates the Expression of IFN-I-Stimulated Genes. To explore the functions of Clec12A in sterile inflammation, we induced noninfectious cell death in the mouse thymus via X-ray irradiation in vivo (11). Clec12A ligands will be exposed in such a model either directly by dead thymocytes or due to the resultant inflammation. We observed that the expression of proinflammatory chemokines and cytokines in the thymus was up-regulated in the absence of Clec12A, consistent with the inhibitory role of Clec12A during sterile inflammation (11, 12). In these experiments, we additionally observed substantial decreases in Ifit3 and Irf7 expression in the irradiated thymi of Clec12a−/− mice (Fig. 1A). Because both Ifit3 and Irf7 are strongly induced by IFN-I (14), we became interested in putative functions of Clec12A in regulating the IFN-I response.

As indicated above, IFN-I is strongly induced after cytosolic nucleic acid sensing and is particularly important during viral infection. Therefore, we next investigated potential crosstalks between Clec12A and the RIG-I signaling pathway. To this end, we utilized bone marrow-derived dendritic cells (BMDCs), which are strongly induced by IFN-I (14), we became interested in the interplay of cell death receptors and IFN-signaling pathways during infection and reveal a previously unrecognized positive regulatory role of an ITIM-containing CLR for IFN-I production.
Clec12A Regulates IFN-I Production but Not IFN-I Receptor Signaling.

Key for the expression of ISGs is the activation of the transcription factor STAT1. Upon stimulation of the IFN-I receptor with IFN-I, STAT1 is phosphorylated at position Y701, resulting in a heterodimerization of STAT1 with STAT2 and the formation of the transcriptionally active ISGF3, which directs the expression of ISGs (14). To gain insights into the molecular mechanisms by which Clec12A regulates ISG expression, we first studied STAT1 phosphorylation upon 3pRNA treatment, with or without MSU crystal costimulation. Consistent with the decreased expression of ISGs, the Clec12A−/− cells also exhibited reduction of STAT1 Y701 phosphorylation upon 3pRNA transfection (Fig. 2C). This effect was observed with and without MSU crystal costimulation (Fig. 2D).

The reduced STAT1 phosphorylation of Clec12A-deficient cells could be either a direct consequence of impaired intracellular IFN-I receptor signaling or a secondary effect of reduced IFN-I production leading to decreased autocrine IFN-I receptor stimulation or paracrine stimulation of neighboring cells. To explore these possibilities, we next stimulated WT and Clec12a−/− BMDCs in combination with increasing concentrations of recombinant IFN-β, with or without MSU crystal costimulation. Subsequent Western blot analysis revealed regular STAT1 phosphorylation in Clec12a−/− BMDCs under all tested conditions (Fig. 2B). These results were further corroborated by the observation that the Ifit3 and Ifi77 transcripts were also regularly induced in Clec12a−/− BMDCs upon recombinant IFN-β treatment (Fig. 2C). Thus, the deficiency of Clec12A does not directly influence the IFN-I receptor pathway. In contrast, the production of IFN-I upon RIG-I stimulation, with or without MSU crystal costimulation, was significantly impaired in the absence of Clec12A (Fig. 2D), demonstrating that Clec12A is required for optimal IFN-I production upon RIG-I stimulation.

Clec12A Amplifies the TBK1-IRF3 Axis of RIG-I-Induced IFN-I Production through Activating SFKs. The expression of IFN-I in response to RIG-I ligation is controlled by the transcription factor IRF3, which is activated by the serine kinase TBK1 (21). This TBK1-IRF3 signaling module serves as a point of convergence for several IFN-I–driving innate signaling pathways (17). To test if Clec12a signaling could modulate the TBK1-IRF3 signaling axis, we next costimulated WT and Clec12a−/− BMDCs with 3pRNA and MSU crystals. As expected, this treatment triggered the phosphorylation of TBK1 at S172, which is indicative of TBK1 activation (Fig. 3A). Full TBK1 activation was dependent on Clec12a (Fig. 3A). In line with these results, the costimulation-induced phosphorylation of IRF3 at S396 was also impaired in Clec12A-deficient cells (Fig. 3B). As the levels of lactate dehydrogenase (LDH) in the supernatants of the stimulated cells did not differ between WT and Clec12a−/− BMDCs (SI Appendix, Fig. S2), the differences in TBK1/IRF3 signaling were not due to a potential increase in the death of stimulated Clec12A-deficient cells. Because the phosphorylation of IRF3 by TBK1 induces its transcriptional activity (22), these findings elucidate the impaired IFN-I production of 3pRNA+MSU crystal-stimulated Clec12A-deficient cells.

Src family tyrosine kinases (SFKs) can directly phosphorylate TBK1 at Y179, which facilitates the autophosphorylation of TBK1 at S172 and increases the TBK1 kinase activity (23). Given that SFKs can be activated by CLRs (6), we next tested whether
Clec12A could modulate TBK1 activity via SFK signaling. Therefore, we again costimulated WT and Clec12A−/− BMDCs with MSU crystals plus 3pRNA and investigated Y416 phosphorylation within the Src kinase domain (and the corresponding analogues sites within other SFKs) by Western blot analysis as a measurement for SFK activation (24). Indeed, 3pRNA and MSU crystal costimulation triggered SFK activation in BMDCs in a Clec12A-dependent manner (Fig. 3C). To test whether the Clec12A-mediated SFK activation would negatively modulate the IFN-I response, we pretreated WT and Clec12A-deficient BMDCs with the SFK inhibitor PP2 (25) prior to 3pRNA and MSU crystal costimulation. Inhibition of SFK abolished the Clec12A-dependent increases in TBK1 and IRF3 phosphorylation in the WT BMDCs (Fig. 3D). Moreover, the pharmacological blocking of SFK activity (25) also inhibited the Clec12A-dependent enhancement of ISG expression, with or without MSU costimulation (Fig. 3E and SI Appendix, Fig. S3A), indicating that the amplification of the RIG-I–triggered IFN-I production via Clec12A is mediated at least in part via the activation of SFKs. Since Clec12A can recruit phosphatases such as SHP-1/2 via its ITIM motif, we also pretreated the BMDCs with the SHP-1/2 inhibitor NSC-87877 before cell stimulation with 3pRNA+MSU. However, SHP-1/2 inhibition did not restore the defective expression of Ifi3 in the Clec12A-deficient BMDCs and did not diminish Ifi3 expression in the WT cells (SI Appendix, Fig. S3B), indicating that the Clec12A–associated phosphatases are dispensable for these processes, which is consistent with the activation of SFK being upstream of SHP-1/2 recruitment.

Clec12A Regulates IFN-I Responses during Virus Infection In Vivo. Because IFN-I production and ISG expression are particularly important for host immunity against viral infection, we next investigated the function of Clec12A in acute or chronic viral infection. To this end, we used the RNA virus LCMV, which triggers RIG-I–dependent IFN-I production, as a model (26). We infected WT and Clec12A-deficient mice with 2 LCMV strains: the LCMV-WE strain, which causes acute infection that can be cleared by immune-competent mice within 1 or 2 wk, and the LCMV-Docile strain, which establishes a chronic infection in adult mice that can persist for months (27).

The infection of WT mice with 200 plaque-forming units (PFU) of LCMV-WE triggers a profound production of IFN-α measured in the serum (Fig. 4A). However, in the absence of Clec12A, this IFN-I response was significantly reduced (Fig. 4A), highlighting a positive regulatory role for Clec12A in IFN-I response upon viral infection in vivo. Moreover, and consistent with the critical function of IFN-I for antiviral host protection, the Clec12A−/− mice exhibited significantly higher viral loads on day 14 postinfection of 2 × 10^6 PFU of LCMV-WE, as determined by measuring the viral NP gene copy number in the liver homogenates (Fig. 4B). This elevated viral titer in Clec12A−/− mice was also consistently associated with an increase in LCMV-WE–triggered liver damage (Fig. 4C) (28), which was monitored over time by examining the activity of the liver enzymes AST and ALT released from dying hepatocytes.

Next, we i.v. injected 2 × 10^4 PFU of LCMV-Docile to study the role of Clec12A under conditions of chronic viral infection. Two days after infection, we again detected significantly decreased levels of IFN-α in the sera of Clec12A−/− mice (Fig. 4D). Noteworthy, during chronic LCMV infection, prolonged IFN-I signaling induces immunosuppressive programs that promote virus persistence, and an attenuated IFN-I response at early phases can facilitate later viral clearance by the host (15, 16). In line with the reduced IFN-I production during the early phase of...
LCMV-Docile infection, the Clec12a−/− mice exhibited more efficient virus clearance by day 70 postinfection in comparison to the WT controls (Fig. 4E). Thus, together, these infection experiments demonstrate that Clec12A signaling controls the level of the IFN-I response and its respective biological consequences during acute or chronic viral infections in vivo.

To probe the role of Clec12A in modulating IFN-I response beyond LCMV infection in vivo, we additionally infected Clec12a−/− mice with influenza virus, which is another RNA virus subtype in the mouse. Indeed, upon influenza virus infection, Ifna4 expression was significantly reduced in the lung tissues of Clec12a−/− mice as compared to their WT counterparts (Fig. 4F), further demonstrating that Clec12A is required for optimal IFN-I responses upon virus infections in vivo.

Discussion

In this study, we demonstrate an unexpected positive regulatory function of the ITIM receptor Clec12A on the production of IFN-I and the subsequent regulation of the IFN-I response gene expression signature. This Clec12A-mediated pathway can amplify signals elicited by the RNA sensor RIG-I through the MAVS pathway upon MSU crystal detection in vitro and controls the respective host responses to acute and chronic viral infections in vivo.

Critical for IFN production in response to viral infection or sensing of foreign cytosolic nucleic acids is the activation of the kinase TBK1 and the subsequent engagement of the transcription factor IRF3. A recent report has demonstrated that the activation of SFKs can potentiate TBK1 kinase activity after viral infection (23). In line with these findings, our data indicate that the mechanism by which Clec12A amplifies the IFN responses is triggered via SFK activity, as the Clec12A-mediated enhancement of TBK1 activation and downstream IRF3 phosphorylation after MSU crystal detection is abolished by pan-SFK inhibitor PP2 treatment. SFK activation by CLRs is in general a first step in the signaling cascades for the engagement of downstream pathways. It is necessary for the subsequent ITIM or ITAM phosphorylation for the recruitment of SHP-1/2 (inhibitory ITIM receptors) or Syk (activating ITAM receptors). Because pharmacological SHP-1/2 inhibition does not affect Clec12A-regulated ISG expression, we hypothesize that Clec12A signaling bifurcates at the level of SFK activation, such that one branch activates TBK1 to potentiate IFN-I response, whereas the other pathway activates Syk and renders SHP-1/2 recruitment and counter signaling of Syk as we have reported previously (11). Although the precise mechanisms of SFK activation by Clec12A are unresolved, the detection of uric acid in its crystalline form likely leads to Clec12A clustering and membrane reshuffling with subsequent SFK activation, similar to the activation of SFKs by the prototypic CLR Dectin-1 (31). In this study, we have focused our efforts on the interaction between Clec12A and RIG-I signaling. However, because other nucleic acid-sensing innate immune pathways, such as the cGAS-STING and TLR3/4-TRIF cascades, also activate the IFN-I-response via the TRIF-IRF3 module, it is possible that these pathways could also be modulated by Clec12A, which needs to be investigated in future studies. The fact that Clec12A does not modulate only RNA virus-sensing pathways is already indicated by our initial observation that Clec12A amplifies the IFN-I response during sterile inflammation in irradiated thymus.

In vivo, we found impaired virus-induced IFN-I production and ISG expression in the absence of Clec12A with respective functional consequences. During acute LCMV infection, Clec12A-deficient mice exhibited not only reduced IFN-I levels but also increased LCMV titers, consistent with the fact that many ISGs block key steps in the virus replication cycle, including the transition of virus from the late endosome or lysosome to the cytosol, or the budding of enveloped viruses (14). However, during chronic LCMV infection, prolonged IFN-I signaling can facilitate virus persistence by inducing the expression of negative immune regulators, such as programmed death-ligand 1 and IL-10 (15, 16). In line with these facts, we also observed effects on LCMV clearance during chronic infection caused by the Clec12A-deficient work. Furthermore, in our first experiments with influenza virus, we additionally demonstrated that Clec12A regulates IFN-I responses during infection with this virus indicating that the function of Clec12A in IFN-I regulation is not restricted to a single virus family.

As Clec12A is a known sensor of damaged cells (11), it is conceivable that in the context of viral infection, Clec12A can be activated by dead host cells or associated DAMPs, such as uric acid crystals. During the initial phase of a viral infection, proinflammatory cytokine and IFN-I responses can be simultaneously induced to shape and amplify the antiviral immune response. However, if some measures such as the number of immune cells are insufficient to clear the virus, the subsequent cell damage will create an environment that can additionally activate Clec12A. Previously, Clec12A has been shown to limit proinflammatory responses, including immune cell migration and proinflammatory cytokine/chemokine production to limit immunopathology (11). Now, we additionally report that Clec12A positively regulates the IFN-I response. Collectively, we speculate that Clec12A could serve as a molecular scout during viral infection that instructs the immune system to curb inflammatory immunopathology and at the same time amplifies the IFN-I response and ISG expression, which are tailored to block virus replication (14).

Interestingly, cells from different host tissues vary in their capacity to crosslink and activate Clec12A (10). Moreover, while Clec12A clearly recognizes uric acid crystals, it can presumably sense additional unknown endogenous ligands from damaged cells (11). Therefore, in a given infectious context, the amount of Clec12A activation might depend on the specific tissue environment and the local availability of Clec12A ligands. We used MSU crystal as one bona fide Clec12A agonist (11) in our experiments. However, MSU crystals can also activate the NLRF3 inflammation and innate immune pathways such as NLRP1/3 (36). DCIR can recruit and activate Clec12A and DCIR indicate that several ITIM-containing CLRs also recognize collagen antibody-induced arthritis model (36). DCIR can recognize a variety of fucose/mannose-containing carbohydrate moieties of both endogenous and exogenous origins, including the gp140gp120 of HIV (37). Although DCIR is similarly required for the optimal transcription of IFN-I signature genes, unlike Clec12A, it does not directly regulate IFN-I production, but rather modulates the IFN-I response by selectively activating IFN-I signaling only after IFN-I receptor ligation. The distinct yet converging molecular mechanisms of IFN-I response regulation by Clec12A and DCIR indicate that several ITIM-containing CLRs have evolved to modulate the IFN-I response during infection.

In conclusion, within this study, we have established a positive regulatory function of Clec12A in the IFN-I response on a clean genetic basis and a principle mechanism by which endogenous danger signals detected by the innate immune system can be translated into fine-tuned immune responses to infection. Because the genetic loss of Clec12A can enhance protective immunity in a model of chronic LCMV infection, it would be of interest to explore whether Clec12A inhibition could also be beneficial during clinically relevant persistent infections with viruses such as HIV or...
HCV, which also exhibits chronic IFN-I signaling (38, 39). Moreover, because a robust induction of IFN-I responses is critical to trigger radiation-induced antitumor immunity (40), and considering that Clec12A potentiates ISG expression during radiation-induced sterile inflammation, future studies that explore the role of Clec12A in cancer radiotherapy are warranted.

Materials and Methods
Additional methods are presented in SI Appendix, Extended Materials and Methods.

Mice. Clec12A−/− mice were described previously (11). For in vivo experiments, age- and sex-matched WT and Clec12A−/− mice were cohoused for at least 1 mo prior to the experiments. All animal work was conducted in accordance with the German Animal Welfare Act and was approved by the Institutional Animal Care and Use Committee at the Technical University of Munich or was authorized by Veterinärämte Nordrhein-Westfalen (Düsseldorf, Germany).

Cell Culture and Stimulation. BMDCs were differentiated from bone marrow aspirates as previously described (41). Cells were kept in RPMI 1640 with 5% FCS during stimulation. Lipofectamine 2000 (Invitrogen) was used to transfect 3pRNA into BMDCs.

Immunoblot Analysis. BMDC cells stimulated for indicated times were lysed in Laemmli buffer or Nonidet P-40 buffer (for SFK detection) and subjected to standard immunoblot analysis. Quantification of protein bands was performed by densitometry using ImageJ software. Densitometry data of target proteins were first compared to those of the respective loading controls and were subsequently normalized to specific treatment conditions, as indicated.

Statistical Analysis. Data were analyzed and plotted by using GraphPad Prism (GraphPad software, La Jolla, California). When the data were normally distributed, unpaired t tests (2-tailed) were used to compare 2 means. When the data did not follow a normal distribution, Mann–Whitney tests were used to compare 2 means. Analysis across more than 2 groups within a single dataset was performed using 1-way ANOVA with post hoc Tukey’s test.

ACKNOWLEDGMENTS. We thank Hendrik Poeck for sharing MAVS-deficient bone marrow cells; Nicole Prause, Tanja Neumayer, and Kerstin Burmeister for providing excellent technical assistance; Silvia Thöne for critical manuscript editing; and David M. Underhill for providing laboratory resources and valuable scientific discussion during paper revision. This work was supported by research grants from the Deutsche Forschungsgemeinschaft (DFG) (SFB 1054/B01, Projektnummer 360372040 – SFB 1335, Projektnummer 395357507 – SFB 1371, TRR 237/A10, and RU 695/9-1) and the European Research Council (ERC) (FP7, Grant Agreement 322865) (to J.R.). We thank the high-throughput-sequencing unit of the Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), for providing excellent sequencing services.

23. X. Li et al., The tyrosine kinase Src promotes phosphorylation of the kinase TBK1 to facilitate type I interferon production after viral infection. Sci. Signal. 10, eaaa4035 (2017).
27. V. Duan et al., Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control. Sci. Rep. 6, 19191 (2016).