Rickettsia conorii O antigen is the target of bactericidal Weil–Felix antibodies

Hwan Keun Kim\(^{a,b,1}\), Ranjan Premaratna\(^{c}\), Dominique M. Missiakas\(^{a,b}\), and Olaf Schneewind\(^{a,b}\)

\(^{a}\)Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439; \(^{b}\)Department of Microbiology, University of Chicago, Chicago, IL 60637; and \(^{c}\)Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama 11010, Sri Lanka

Edited by Thomas J. Silhavy, Princeton University, Princeton, NJ, and approved July 22, 2019 (received for review April 17, 2019)

Rickettsial diseases have long been diagnosed with serum antibodies cross-reactive against *Proteus vulgaris* (Weil–Felix reaction). Although Weil–Felix antibodies are associated with the development of immunity, their rickettsial target and contribution to disease pathogenesis are not established. Here, we developed a transposon for insertional mutagenesis of *Rickettsia conorii*, isolating variants defective for replication in cultured cells and in spotted fever pathogenesis. Mutations in the *polysaccharide synthesis operon* (*pso*) abolish lipopolysaccharide O-antigen synthesis and Weil–Felix serology and alter outer-membrane protein assembly. Unlike wild-type *R. conorii*, *pso* mutants cannot elicit bactericidal antibodies that bind O antigen. The *pso* operon is conserved among rickettsial pathogens, suggesting that bactericidal antibodies targeting O antigen may generate universal immunity that could be exploited to develop vaccines against rickettsial diseases.

Results

kaebe Transposon Mutagenesis Identifies R. conorii Variants Defective in Intracellular Replication. Earlier work developed transposon mutagenesis for the selection of antibiotic-resistant *Rickettsia* variants. However, the selection for transposon mutants was hindered by rickettsial variants with spontaneous resistance to antibiotic selection (12, 13). To overcome this obstacle, we measured the frequency of spontaneous resistance in *R. conorii* replicating in Vero cells. *R. conorii* rifampin-resistant plaques appeared at a frequency of \(1 \times 10^{-7}\) plaque-forming unit (PFU), whereas chloramphenicol-resistant plaques were not isolated (mutational frequency \(<1 \times 10^{-8}\) PFU). Using whole-genome sequencing, we identified a missense mutation in the *pob* gene of rifampin-resistant *R. conorii* (amino acid substitution D533G [accession no. SRR8404401 [wild-type *R. conorii*] and SRR8404402 [rifampin-resistant *R. conorii*]; refs. 14 and 15). These findings corroborate previous work, demonstrating that *pob* missense mutations (R546K) provide for rifampin resistance in *R. prowazekii* (16). However, chloramphenicol does not appear to select for spontaneously resistant *R. conorii* variants and was therefore used for the selection of transposon mutants.

For insertional mutagenesis, we generated pHTRL3, which carries a codon-optimized gene for chloramphenicol acetyltransferase (*cat*) flanked by the inverted repeats (IR) of the Tn5 transposon mutagenesis | lipopolysaccharide | O antigen | Weil–Felix reaction | polysaccharide synthesis operon

Significance

Getenetic analysis of *Rickettsia* has been difficult. We developed a transposon and selection scheme to facilitate the isolation of *Rickettsia conorii* mutants with insertional lesions. Here, we demonstrate that the *R. conorii polysaccharide synthesis operon* (*pso*) encompasses genetic determinants for biosynthesis of the O antigen, which also affect the composition of outer-membrane proteins, invasion of host cells, and pathogenesis. The O antigen provides essential barrier functions and plays a major role in host–pathogen interactions. Our findings suggest that infected hosts develop protective immunity against *R. conorii* via the production of antibodies targeting the O antigen. Conservation of *pso* among rickettsial species suggests that it may play a universal role in O-antigen synthesis, disease pathogenesis, and the development of immunity.

Author contributions: H.K.K., D.M.M., and O.S. designed research; H.K.K. performed research; R.P. contributed new reagents/analytic tools; H.K.K., D.M.M., and O.S. analyzed data; and H.K.K., D.M.M., and O.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). Data deposition: Whole-genome sequencing data for wild-type *R. conorii* Malish 7 (accession no. SRH840402) and rifampin-resistant *R. conorii* (accession no. SRH840440) are deposited in the Sequence Read Archive.

1To whom correspondence may be addressed. Email: hkim4@bsd.uchicago.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911922116/-/DCSupplemental.

First published August 14, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1911922116
transposon under control of the *R. rickettsii* rompB promoter (P\(_{\text{rompB}}\)) (Fig. 1A). The minitransposon was named *kkaebi*. *kkaebi* DNA was PCR amplified from pHTRL3 template DNA, cleaved with restriction enzyme (RE), and incubated with Tn5 transposase to generate transposome complexes that, when electroporated into *R. conorii* and selected on Vero cell cultures in the presence of chloramphenicol, generated insertional mutants. Sequence analysis of the transposon insertion sites revealed that all *R. conorii* variants harbored single insertions of A\(_{\text{Glu}}\) and upstream pro- sequence homology with 3 gene products from *R. conorii* kkaebi mutant strains HK2 and HK15 were analyzed by Coomassie silver staining. As expected, LPS from wild-type *R. conorii* migrated as a spectrum of molecules with tethered O-antigen repeats and ladder-like appearance on polyacrylamide gels (Fig. 2B). LPS isolated from the HK15 mutant exhibited a similar migration pattern (Fig. 2B). In contrast, a single LPS species was purified from the HK2 variant, which migrated faster on the polyacrylamide gel than wild-type and HK15 LPS (Fig. 2B). Immunoblot analysis with *R. conorii*-specific human antisera (α-Rc\(_{\text{Hu}}\)) revealed antibodies that bound LPS from wild-type and HK15 *R. conorii*, but not LPS from the HK2 variant (Fig. 2C). Rabbit IgG raised against wild-type LPS isolated from HK2 and HK15 was probed with purified LPS, α-LPS\(_{\text{HK2}}\), bound LPS from wild-type and HK15 *R. conorii*, but displayed only weak binding for HK2 LPS (Fig. 2D). Rabbit IgG raised against purified HK2 and HK15 LPS (α-LPS\(_{\text{HK2}}\) and α-LPS\(_{\text{HK15}}\)) bound to the cognate LPS antigens but did not exhibit cross-reactivity with LPS from wild type or the other mutant strain (Fig. 2D). The LPS O-antigen biosynthesis defect in *R. conorii* HK2 was in part restored by transformation with pHTRL8. This plasmid carries Rs0457 and upstream promoter sequences as well as Rs0458 to Rs0460 (SI Appendix, Fig. S3). Rs0457 encodes UDP-GlcNAc 4,6-dehydratase/3,5-epimerase, an enzyme that is essential for QuiNAc and O-antigen polysaccharide synthesis in *V. cholerae*. Next, we performed immunoblot analyses with affinity-purified LPS from *P. vulgaris* OX2 and OX19 and *Proteus mirabilis* OXK (Fig. 2E). As expected, α-Rc\(_{\text{Hu}}\), but not α-Oh\(_{\text{Hu}}\) (human immune serum from individuals infected with *Orientia tsutsugamushi*) harbored Weil–Felix antibody against OX2 and OX19 LPS (Fig. 2F). Finally, rabbit α-LPS\(_{\text{HK2}}\), but not rabbit α-LPS\(_{\text{HK1}}\), recognized *P. vulgaris* OX2 LPS (Fig. 2G). As previously reported, we detected OX19 LPS-specific antibodies in naive rabbit serum, which prohibited further cross-reactivity analysis (22). Together these data indicate that *R. conorii* pso encodes genes for the synthesis of the O antigen of LPS, which represents the rickettsial target of Weil–Felix antibodies.

Without O-Antigen Synthesis, *R. conorii* Displays Altered Outer-Membrane Protein Content and Reduced Host Cell Invasion Activity. We wondered whether the O-antigen synthesis defects of pso mutants interfere with the assembly of rickettsial outer-membrane proteins. Outer-membrane extracts of wild-type *R. conorii* and the pso mutant strains HK2 and HK15 were analyzed by Coomassie-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which revealed increased abundance of proteins migrating at 190, 120, and 32 kDa from the outer membrane of *R. conorii* HK2 (Fig. 3A). Corresponding gel slices were excised and tryptic peptides of proteins analyzed by mass spectrometry (MS) with in silico comparison of tryptic peptides derived from the *R. conorii* genome (SI Appendix, Table S2). The data identified rOmpA (190 kDa), rOmpB (120 kDa), and rOmpB (32 kDa) as the most abundant species. Of note, the 32-kDa gel slice harbored peptides from 2 additional outer-membrane proteins, rOmpA and Scal. rOmpA and rOmpB are members of the autotransporter superfamily, forming surface (S) layers that contribute to
rickettsial invasion of host cells (23–25). Autotransporters are synthesized as large precursor species with N-terminal signal peptides for secretion via the Sec pathway. The Bam complex subsequently translocates and assembles autotransporters in the outer membrane (26). During assembly, the N-terminal passenger domain is cleaved and displayed on the bacterial surface, while the C-terminal β-barrel domain functions to anchor the passenger domain in the outer membrane. Outer-membrane samples of R. conorii strains were subjected to immunoblotting with monoclonal antibodies specific for the 190-kDa passenger domain of rOmpA or polyclonal antipeptide antibodies specific for the 32-kDa β-barrel domain of rOmpA. Compared to wild-type R. conorii and the HK15 mutant strain, the abundance of the rOmpA passenger and β-barrel domains was increased in R. conorii HK2 (Fig. 3B). Of note, the β-barrel domain exhibited increased mobility in R. conorii HK2, suggesting that the O-antigen synthesis defect altered not only the abundance of the autotransporter but also its proteolytic cleavage. Immunoblotting with polyclonal antibodies against rOmpB also revealed an increased abundance of this autotransporter in R. conorii HK2 (Fig. 3B). Electroporation of R. conorii HK2 with pHTRL8 restored the abundance of rOmpA and rOmpB and of the overall outer-membrane protein content to levels closer to those observed for wild-type R. conorii (SI Appendix, Fig. S3).

Defects in O-antigen synthesis and autotransporter display in R. conorii HK2 were also associated with reduced attachment to Vero cells (WT, 4.0 log_{10} PFU; HK2, 2.4 log_{10} PFU, P < 0.0001 at 1-h postinoculation; Fig. 3C). In pairwise comparisons of rickettsial replication at timed intervals, wild-type and HK15 R. conorii expanded at similar rates (WT, 7.5 log_{10} PFU; HK15, 7.1 log_{10} PFU at 6 d postinoculation, P > 0.05; Fig. 3C). In contrast, R. conorii HK2 replicated at a slower rate (HK2, 5.8 log_{10} PFU at 6 d postinoculation; WT vs. HK2, P < 0.0001; Fig. 3C). The defects in host cell attachment and intracellular growth were restored when R. conorii HK2 was transformed with pHTRL8 [WT, 7.3 log_{10} PFU; HK2 (pHTRL7), 5.8 log_{10} PFU; HK2 (pHTRL8), 7.0 log_{10} PFU at 6 d postinoculation; WT vs. HK2 (pHTRL7), P < 0.0001; WT vs. HK2 (pHTRL8), P > 0.05; SI Appendix, Fig. S3]. In addition to the attachment defect, the HK2 mutant produced a significantly reduced cytopathic area on Vero cell cultures after 3 d of infection (WT, 7.5 (±0.6) × 10^4 μm^2; HK2, 0.8 (±0.1) × 10^4 μm^2; HK15, 4.0 (±0.3) × 10^4 μm^2; WT vs. HK2, P < 0.001; WT vs. HK15, P < 0.001; Fig. 3 D and E). Electron microscopy analysis of cytopathic Vero cells identified R. conorii, mostly within the cytoplasm of host cells, without significant changes in bacterial size and shape (Fig. 3F and SI Appendix, Fig. S4).

R. conorii O-Antigen Synthesis Is Required for Spotted Fever Pathogenesis. To investigate whether R. conorii HK2 or HK15 exhibits virulence defects in the mouse model for acute disease, cohorts of mice were inoculated i.v. with 1 × 10^6 PFU wild-type R. conorii or its HK2 or HK15 variants. Animals infected with wild-type R. conorii exhibited disseminated vascular disease with
variants HK2 and HK15 were analyzed by infection at day 3 for HK2, and exhibited body weight loss (18.5%, \(P < 0.0001\)) during the first 7 d of infection followed by a slow recovery for the next 7 d (returning to 96.5% of the original body weight). Animals infected with \(R.\ conorii\) HK2 or HK15 exhibited only modest weight losses (Fig. 4C). After 14 d, infection with wild-type \(R.\ conorii\) (\(\alpha\)-WT) elicited IgG antibody responses to rickettsial LPS that were not observed in animals infected with \(R.\ conorii\) HK2 or HK15 (Fig. 4D). However, preexisting antibodies recognizing OX2 and OX19 LPS in naive mice prevented further correlation between \(R.\ conorii\) infection and positive Weil–Felix serology (Fig. 4E). Importantly, \(\alpha\)-WT, but neither \(\alpha\)-HK2 nor \(\alpha\)-HK15, promoted complement-mediated killing of \(R.\ conorii\) in mouse plasma (Fig. 4F).

Discussion

Our results demonstrate that the \(R.\ conorii\) pso locus is responsible for O-antigen biosynthesis, contributes to the pathogenesis, and is essential for the development of bactericidal Weil–Felix antibodies. In light of these findings, bactericidal Weil–Felix antibodies can be assigned a role in protective immunity, supporting earlier clinical observations associating increased Weil–Felix antibodies with survival and convalescence and bactericidal Weil–Felix antibodies with protective immunity in individuals receiving whole-cell Rocky Mountain spotted fever or epidemic typhus vaccines (27, 28). Although the pso locus is conserved among spotted fever- or typhus-causing \(Rickettsia\) species, there exist variations in pso gene content among the 2 groups. We hypothesize that the genetic differences of the pso locus are responsible for differences in Weil–Felix serology as, for example, spotted fever agents, but not typhus agents, elicit antibodies that are cross-reactive with \(P.\ vulgaris\) OX2 (29). Nevertheless, similar to carbohydrate-specific bactericidal antibodies in established bacterial vaccines (5), the discovery of the pso locus may be exploited to generate O-antigen-specific subunit vaccines against spotted fever and typhus agents whose bactericidal antibodies are likely to provide a correlate for protective immunity against the corresponding rickettsial diseases.

We show here that chloramphenicol is a suitable antibiotic to select for \(R.\ conorii\) variants with insertional \textit{kkaebi} lesions. Even if the insertional lesion disrupts a gene that contributes to tissue invasion or intracellular replication, some of these mutations will exert partial phenotypes of delayed replication, diminished invasion, or reduced cell-to-cell spread that should allow their isolation and phenotypic characterization. Thus, a library of several thousand \(R.\ conorii\) mutants with mapped insertional lesions may be tremendously useful for the field of rickettsial biology in assigning function to the more than 800 genes that remain as of yet uncharacterized. Others have initiated similar insertional mutagenesis studies focusing on \(R.\ parkeri\), \(R.\ rickettsii\), and \(R.\ prowazekii\) (30–33). Together, the results from all of these studies should enable comparative genetic analyses of rickettsial species in the near future, which would be a tremendous boost for a field that for many years was hampered by the lack of tools for genetic studies.

We think it is likely that the insertional disruption of \textit{Rc0457} in \(R.\ conorii\) HK2 abolishes the synthesis of the O-antigen repeats within LPS, allowing the mutant to synthesize a rudimentary lipid A core molecule that cannot be further modified. LPS is a major outer-membrane component essential for the growth of many gram-negative bacteria. The biosynthesis and transport of LPS are tightly controlled and coupled to the synthesis and assembly of other cell envelope components, such as peptidoglycan and S-layer proteins, to prevent loss of outer-membrane integrity (34, 35). We envision that the altered composition of the outer...
membrane, notably increased surface proteins rOmpA and rOmpB, contributes to the survival of the HK2 variant under high osmolarity pressure. It would be interesting to learn the detailed structure of R. conorii O antigen and to compare its structure with relevant O antigens from spotted fever- and typhus-Rickettsia as well as P. vulgaris and V. cholerae. Such analyses, combined with the study of antibodies that cross-react with specific LPS molecules, as is provided here, should resolve remaining questions on how certain bacteria elicit antibodies cross-reactive to rickettsial LPS, where these antibodies bind, and how they may be exploited for the design of immune therapeutics and vaccines against Rickettsia.

Materials and Methods

Detailed information describing materials and methods is provided in SI Appendix, Materials and Methods.

kkaebi Transposon Mutagenesis. The kkaebi minitransposon DNA was PCR amplified (PCRf, 5′-AAAGACAGCTGTCTCTTATAACACTAATCACCATTAC3′; PCRR, 5′-GACACGCTGTCTCTTATAACACTAATCACCATTAC3′-GACACGCTGTCTCTTATAACACTAATCACCATTAC3′; PCRF, 5′-AAAGACAGCTGTCTCTTATAACACTAATCACCATTAC3′-GACACGCTGTCTCTTATAACACTAATCACCATTAC3′), digested with PshAI, purified, and incubated with Tns5 transposase (Lucigen; 10 μg kkaebi mixed with 2 units Tns5) for 24 h at room temperature to generate transposome complexes. The transposome complexes were dialyzed against 250 mM sucrose prior to electroporation (3 kV μF, 5.0 ms; Gene Pulser Xcell, Bio-Rad) into electrocompetent R. conorii prepared by washing 3 times in cold 250 mM sucrose. kkaebi variants were immediately recovered with DMEM supplemented with 5% HI-FBS and incubated on 6-well tissue culture plates of confluent Vero cells. After 1 h infection at 34 °C in 5% CO2 atmosphere, 6-well plates were overlaid with 0.3% agarose in modified chamber, medium was aspirated and replaced with fresh DMEM with 5% HI-FBS and 0.3 μg ml−1 chloramphenicol. At 4 d postinfection, when monolayers of Vero cells were fully infected, Vero cells were mechanically disrupted with 3-mm glass beads, releasing intracellular R. conorii. After host cell debris was removed by centrifugation (1,000 × g, 4 °C, 5 min), the supernatant containing R. conorii was transferred to 225-cm2 flasks of confluent Vero cells to expand at 34 °C, 5% CO2 for 4 d. Rickettsiae were purified from Vero cells by differential centrifugation through 33% MD-76R solution (21,000 × g, 4 °C, 20 min), washed in Sucrose-Phosphate-Glutamate (SPG) buffer (218 mM sucrose, 3.8 mM KH2PO4, 7.2 mM KHPO4, 4.9 mM l-glutamate, pH 7.2), and suspended in 1 mL SPG buffer. A100 was measured with bacterial samples diluted in SPG buffer.

Nucleotide Sequence Analysis. Blogo sequence analysis was conducted with type 2 logos and base representation calculated from the 9-bp nucleotide sequences flanking the kkaebi insertion sites (36). The background frequencies of A, C, G, and T used for the Blogo analysis were 0.35, 0.19, 0.17, and 0.29, respectively.

Outer-Membrane Fractionation. Outer-membrane fractionation was conducted based on a previously published protocol (37). The centrifugation sediments of R. conorii wild-type and pso variants or overnight cultures of P. vulgaris were suspended in 500 μL of buffer A (200 mM Tris HCl, 1 mM sucrose, 1 mM EDTA, pH 8.0) and mixed with 100 μL of lysozyme (5 mg ml−1 in dH2O; Sigma). After 5 min incubation at room temperature, 2 mL of dH2O was added and incubated for 20 min at room temperature. Then, 3 mL buffer B (50 mM Tris HCl, 2% Triton X-100, 10 mM MgCl2, pH 8.0) and 50 μL of DNase I (1 mg ml−1 in dH2O; Sigma) were added and incubated for 20 min at room temperature. The mixture was ultracentrifuged at 160,000 × g for 60 min at 4 °C. The sediment was suspended in 500 μL of buffer C (200 mM Tris HCl, 2% SDS, 10 mM EDTA, pH 8.8) and used for subsequent analyses.

Affinity Purification of Lipopolysaccharide. LPS was affinity purified using polymyxin B-agarose (38). Specifically, a saturated outer-membrane sample was dialyzed (2-kDa molecular weight cutoff; Thermo Scientific) twice against 4 L dH2O at room temperature. This solution was brought to 50 mM Tris HCl, pH 7.5, mixed with 20 μL of protease K (10 mg ml−1 in dH2O; Sigma), and incubated at 55 °C for 5 h. The crude polysaccharide solution was dialyzed (2-kDa molecular weight cutoff; Thermo Scientific) against 4 L dH2O at 4 °C overnight and brought to 100 mM Na2HCO3, pH 8.0, 0.9% NaCl. The crude polysaccharide sample was applied to a 2-mL polymyxin B-agarose (Sigma) column and incubated at 4 °C for 16 h, followed by washing with 10 mL of wash buffer (100 mM Na2HCO3, pH 8.0). LPS was eluted from the column with 10 mL of elution buffer (1% deoxycholic acid in

Fig. 4. R. conorii O-antigen synthesis is required for pathogenesis. (A and B) Kaplan–Meier analysis for survival (A) and body-weight analysis (B) of C3H/HeN mice (n = 10) infected with 1 × 106 PFU R. conorii WT or the pso mutants HK2 and HK15 or mock infected (Mock). (C) Body-weight analysis of C3H/HeN mice (n = 10) infected with 1 × 106 PFU of R. conorii WT and pso mutant strains. Data are representative of 2 independent experiments. The proportion of survival animals was analyzed using the 2-tailed log-rank test. Two-way ANOVA with Bonferroni posttests were performed to analyze the statistical significance of body-weight change. (D) Immunoblotting of affinity-purified LPS from R. conorii WT, HK2, or HK15 with α-WT, α-HK2, or α-HK15 mouse immune serum. (E) Immunoblotting of affinity-purified LPS from P. vulgaris Ox2 or Ox19 with α-WT or naive mouse sera. (F) Survival of R. conorii in mouse plasma mixed with naive, α-WT, α-HK2, or α-HK15 mouse immune serum (n = 3). Data are the mean ± SEM of 3 independent determinations. Statistically significant differences were analyzed with 1-way ANOVA with Dunnett’s posttest. *P < 0.05; **P < 0.001; ***P < 0.0001.
100 mM NaH2HCO3, pH 8.0) and extensively dialyzed against 4 L of deoxycholic acid removal buffer (4 mM Tris-HCl, pH 8.0, 0.25% NaCl, 10% ETOH), followed by dialysis against diaH2O. LPS samples were concentrated using a Speed-Vac and stored at 4 °C.

SDS-PAGE and Immunoblotting. Samples were mixed with sample buffer (125 mM Tris-HCl, 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.01% bromophenol blue, pH 6.8) and boiled at 95 °C for 10 min. Samples were separated on 15% SDS-PAGE gels and stained with Coomassie Brilliant Blue R-250 for detection of outer-membrane proteins (Amsbio). A silver-staining kit was used for detection of LPS (Bio-Rad). For immunoblot analyses, samples were electrophoretically transferred from the gel onto a 0.22-μm PVDF membrane (GE Healthcare). The membrane was immersed in blocking buffer (TBS-T [100 mM Tris-HCl, pH 7.5, 0.1% Tween-20] with 5% milk) for 1 h at room temperature. The membrane was washed and incubated in a solution containing primary antibodies or antisera for 1 h at room temperature. OmpA-specific mouse monoclonal antibody 63-3 (5,000 dilution), rabbit polyclonal antipeptide antibody c240 targeting the transmembrane domain of R. prowazekii OX19 used in the Weil-Felix test, or rabbit polyclonal antibody recognizing rOmpB (1:1,000 dilution) were used as previously described (generously provided by Ted Hackstadt, Rocky Mountain Laboratory, Hamilton, MT) (39, 40). Rabbit antisera specific to LPS purified from wild-type or isogenic variants were used at a 1:10,000 dilution against R. conorii OX19 (serogroup O2) or 1:1,000 (against P. vulgaris) diluted in TBS-T. Mouse hyperimmune sera collected from R. conorii-infected mice were used at a 1:10,000 (against R. conorii) or 1:625 (against P. vulgaris) dilution in TBS-T. Human antisera collected from patients with confirmed diagnoses of R. conorii or O. tsutsugamushi infections were used at a 1:10,000 dilution in TBS-T (kindly provided by Ranjan Premaratuna, University of Kelaniya) (41). Of note, controls to store and use human antisera for research and diagnosis purposes were obtained at the time of sample collection. This study was approved by the ethics review committee, Faculty of Medicine, University of Kelaniya (IRB reference no. P10604/2018). The membrane was washed 3 times in TBS-T and incubated with peroxidase-conjugated secondary antibodies (anti-mouse IgG and anti-rabbit IgG [Cell Signaling] and anti-human IgG [Abcam]) at a 1:10,000 dilution in TBS-T for 1 h at room temperature. After a final wash, the membrane was developed using SuperSignal West Pico PLUS (Thermo Scientific) and exposed to Amersham Hyperfilm ECL (GE Healthcare).

R. conorii Survival in Mouse Plasma. Whole blood was collected by cardiac puncture of C3H/HeN mice (Charles River Laboratories) and anticoagulated with 10 μg/mL-1 desirudin (Marathon Pharmaceuticals). Plasma was generated by centrifugation of desirudin-treated blood (1,000 × g for 5 min at 4 °C, followed by 10,000 × g for 3 min at 4 °C) for removal of blood cells. The hyperimmune sera samples were heat inactivated at 56 °C for 30 min, followed by incubation on ice for 5 min. Aliquots (50 μL) of 5 × 106 PFU R. conorii were opsonized with 50 μL of hyperimmune sera on ice for 10 min and were incubated for 1 h at 37 °C with rotation for 60 min, at which time all plasma samples were incubated on ice and brought to 1 mL volume with ice-cold DMEM with 5% HI-FBS. Infectious R. conorii titers were determined by plaque assay. R. conorii survival was calculated as the percentage of the average R. conorii initial inoculum at 60 min.

ACKNOWLEDGMENTS. We thank T. Hackstadt, T. Clark, and N. Noriea for reagents and technical advice; C. Emolo and X. Chen for experimental assistance; and members of the Howard Taylor Ricketts Laboratory for comments and discussion. This project has been supported by funds from the University of Chicago to the Howard Taylor Ricketts Laboratory and National Institutes of Health (AI0144136).

Kim et al.