Showcasing joint research from Professor Kihwan Kim’s laboratory (Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China) and Professor Joonsuk Huh’s laboratory (Department of Chemistry, Sungkyunkwan University, Suwon, Korea).

Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device

The molecular vibronic spectroscopy carries the vibrational transitions between nuclear manifolds belonging to two different electronic states of a molecule. Upon the electronic transition, a molecule undergoes a structural deformation, vibrational frequency changes and a rotation of normal modes (Duschinsky mode mixing effect): these are equivalent to the displacement, squeezing and rotation operations in quantum optics, respectively. A chain of ions can perform the quantum optical operations to simulate the vibronic spectroscopy by mapping the vibrational modes of molecules to those of the ions in aid of Raman lasers.
Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device†

Yangchao Shen,†a Yao Lu,a Kuan Zhang,a Junhua Zhang,a Shuaining Zhang,a Joonsuk Huh b and Kihwan Kim a

Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.

1 Introduction

It is believed that a boson sampling computer would demonstrate quantum supremacy and be less demanding of resources than a universal quantum computer.1 Serious experimental endeavors have been reported to realize the small-scale version only in photonic systems.2–7 Recently, it has been suggested that Gaussian boson sampling8,9 can simulate molecular spectroscopy: this particular problem is also expected to reveal the excellence of quantum computing.10,11 In the case of molecular vibronic spectroscopy, there are vibrational transitions between the nuclear manifolds belonging to the two electronic states of a molecule,10,12 as shown in Fig. 1a. Upon the electronic transition, a molecule undergoes structural deformation, vibrational frequency changes, and rotation of the normal modes; within a harmonic approximation of the electronic potential energy surfaces, these are equivalent to the displacement (\(\hat{D}\)), squeezing (\(\hat{S}\)) and rotation (\(\hat{R}\)) operations in quantum optics, respectively. The (mass-weighted) normal coordinates of the initial (Q) and final (Q') states are related linearly as \(Q' = UQ + d\), where U is called the Duschinsky rotation matrix and d is the displacement vector of the multidimensional harmonic oscillators in the mass-weighted coordinate, the corresponding dimensionless displacement vector \(\alpha\) for the quantum optical operation is used later.12 A as result, the molecule performs a multi-mode Bogoliubov transformation13 between the (vibrational) boson operators of the initial and final electronic states.10,11 The probability distribution regarding a given molecular vibronic transition frequency (\(\omega_k\)) at zero Kelvin, which is the Franck–Condon profile, is read as Fermi’s golden rule for a unitary Gaussian operator \(\hat{U}_{\text{Dok}}\):

\[
F(\omega_k) = \sum_{m=0}^{\infty} |\langle m | \hat{U}_{\text{Dok}} | 0 \rangle|^2 \delta(\omega_k - \omega_m)
\]

where \(\Delta_{\omega_n} = \omega_{0-0} + \omega_M - (\sum_{k=0}^{M} m_k \omega_k / 2)\), with the \(k\)-th being the vibrational frequency \(\omega_k\) of a molecule in the final electronic state \(\omega_0\) belongs to the initial electronic state. The constant offset frequency \(\omega_{0-0}\) which includes the electronic transition and zero-point vibrational transition, is set to be zero here without losing the generality. \(|0\rangle = |0_{1}, \ldots, 0_{M}\rangle\) and \(|m\rangle = |m_{1}, \ldots, m_{M}\rangle\) are the initial and final \(M\)-dimensional Fock states, respectively.

Doktorov et al.14 decomposed \(\hat{U}_{\text{Dok}}\) in terms of the elementary quantum optical operators as follows:

\[
\hat{U}_{\text{Dok}} = \hat{D}_{N}(\alpha) \hat{S}_{N}(\zeta) \hat{R}_{N}(U) \hat{S}_{N}(\zeta)
\]

where \(\hat{D}_{N}, \hat{S}_{N}, \hat{R}_{N}\) and \(\hat{R}_{N}\) are the \(N\)-mode operators of displacement, squeezing and rotation14 (see also section A in the ESI†); \(\alpha = \zeta d / \sqrt{2} \hbar\) is a (dimensionless) molecular displacement vector, \(\zeta = \text{diag}(\ln \sqrt{\omega_1}, \ldots, \ln \sqrt{\omega_N})\) and...
are implemented by Raman laser beams (see section C in ESI). Radial modes (X and Y) of a single trapped-ion. The photoelectron process is simulated by applying a series of quantum optical operations, which describes squeezing parameters, and \mathbf{U} is a unitary rotation matrix. The actions of the quantum optical operators are defined in ref. 15. Therefore, the sequential operations of the quantum optical operators in eqn (2) in the vacuum state and the measurement using a Fock basis, as in eqn (1), can simulate the Franck-Condon profile.10

The process of molecular vibronic spectroscopy can be understood as a modified boson sampling with Gaussian input states, such as thermal and squeezed vacuum states. Gaussian boson sampling, which is classified as a classically hard problem from a computational complexity perspective,6,9 requires more quantum optical operations on top of beam splitting and phase shifting operations for standard boson sampling. Boson sampling, however, is challenging in an optical system2-5 because of the difficulties in preparing the initial states: single Fock states for original boson sampling and squeezed coherent states for molecular simulation. Non-optical boson sampling devices, such as trapped-ion devices16-17 and superconducting circuits,18 have been suggested theoretically for the scalable boson sampling machine to overcome the difficulties of optical implementation in preparing the single photon states. Moreover, these non-optical devices can handle the squeezed states with relative ease. In this article, we present the first quantum simulation of molecular vibronic spectroscopy with the particular example of photoelectron spectroscopy of SO$_2$. Our trapped-ion simulation is performed using a single 174Yb$^+$ ion confined in the 3-dimensional harmonic potential generated by the four-rod trap. The two vibrational modes of the molecule are mapped to the two radial phonon modes (X and Y) of an ion, with the trap frequencies $\omega_X = (2\pi) 2.6$ MHz and $\omega_Y = (2\pi) 2.2$ MHz. After the mapping of the Hilbert space between the real molecule and simulator is established, the molecular spectroscopy is simulated through the following procedure: (i) the ion is first initialized to the motional ground state, (ii) the quantum optical operations in eqn (2) are then sequentially applied, and (iii) finally, the vibronic spectroscopy is constructed using the collective projection measurements (see ESI section D1 for the details). Accordingly, for the first step of the molecular spectroscopy simulation, we prepare the ion in the ground state $|n_X = 0, n_Y = 0\rangle$ by Doppler cooling and resolved sideband cooling methods.21,22 Next, we perform the required displacement, squeezing, and rotation operations by converting the molecular parameters to the corresponding device parameters. The molecular parameters, α, ζ, U, and ζ, can be obtained via conventional quantum chemical calculations with the available program packages (e.g., ref. 23). See section B in the ESI1 for the details of the parameter conversion for SO$_2$.

The quantum optical operations (displacement \mathbf{D}, squeezing \mathbf{S}, and rotation \mathbf{R}), which preserve the phase coherence amongst themselves, are implemented by the σ^+-polarized Raman laser beams from a pico-second pulse laser with a wavelength of 375 nm (see section C in the ESI1). In the trapped-ion experiment, the quantum optical operations with the desired parameters can be performed by controlling the applied laser beams.

2 Experimental implementation

Fig. 1b schematically illustrates the quantum optical operations of eqn (2) in the trapped-ion device for the molecular vibronic spectroscopy of SO$_2$. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
frequency, duration, intensity, and phase. With different Raman laser configurations (see section C in the ESI†), we can realize the displacement, squeezing, and rotation operations, respectively.24,25 Fig. 2a shows the performance of the experimental displacement \(\hat{D}_s(\alpha) = \hat{D}(\alpha, 0) = e^{\alpha a_s^\dagger + \alpha^* a_s} \) and squeezing \(\hat{S}_s(\xi) = \hat{S}(\xi) = \frac{1}{2} e^{\xi (a_s^\dagger a_s^\dagger - a_s^\dagger a_s)} \) operations, where \(a_s \) and \(a_s^\dagger \) are the annihilation and creation operators of the bosonic mode \(X \), respectively. The amount of displacement \(\alpha \) and the squeezing parameter \(\xi \) are controlled by the duration of the corresponding Raman beams with rates of 0.042 \(\mu s^{-1} \) and 0.004 \(\mu s^{-1} \), respectively. We examine the trapped-ion implementation of the rotation operation \(\hat{R}_s(U) = e^{i \theta (a_s^\dagger a_s)} \) between modes \(X \) and \(Y \) with two sets of initial states, as indicated in Fig. 2b. The rotation angle \(\theta \) is also controlled by the duration of the operation with a rate of 0.005 rad \(\mu s^{-1} \). The oscillations in Fig. 2b of the initial state \(|n_X = 1, n_Y = 0 \rangle \) (orange and green) are two times slower than those from state \(|1, 1 \rangle \) (blue, black, and red), as expected. We note that at \(t = 157 \mu s \), the near zero probability of \(\langle 1, 1 | \hat{R} | 1, 1 \rangle \) originates from the Hong–Ou–Mandel interference.25

Fig. 3a depicts a scheme for reconstructing the spectroscopy at zero Kelvin from the output measurements of the trapped-ion simulator. The transition intensities from the ground state to the excited states are aligned according to the transition frequencies. Fig. 3b illustrates the transition between the two-dimensional Fock spaces resulting from the two-dimensional harmonic oscillators. Finally, we perform the collective quantum-projection measurement of the final state \(|n_X, n_Y \rangle \) advanced from the measurement scheme of ref. 26 and 27: first, we transfer the population of a target state \(|n_X, n_Y \rangle \) to the \(|0, 0 \rangle \) state by a sequence of \(\pi \) pulse transitions. Then, we measure the state population by applying three sequential fluorescence detections combined with the uniform red sideband technique (see section D in the ESI†). Our quantum projection measurement is limited by the imperfection of the state transfer and the fluorescence detection efficiency. We plot the fidelity of the collective projection measurement of the \(|n_X, n_Y \rangle \) state in Fig. 3c. Based on the fidelity analysis, we perform measurement-error corrections for the experimental raw data (see section E in the ESI† for detailed information).

3 Results

Finally, we simulate the photoelectron spectroscopies of SO2 and SO2−, in which a single electron is removed from the molecule during the photon absorption process, with our trapped-ion quantum simulator. Owing to the symmetry of the molecules, we use only two vibrational modes of sulfur dioxide, which show mixing of the vibration modes with respect to the final vibrational coordinates26 in our quantum simulation for the molecular spectra; the remaining vibrational mode does not contribute to the overall spectral shape because SO2 does not deform along the remaining (non-totally-symmetric) vibrational mode during the vibronic transition.

Fig. 4 presents the photoelectron spectra, \(\text{SO}_2 \rightarrow \text{SO}_2^+ \) and \(\text{SO}_2^- \rightarrow \text{SO}_2 \), obtained from our trapped-ion quantum simulation; these are compared with the theoretical classical calculations. Fig. 4 shows good agreement between the theory calculations and the trapped-ion simulations of the two photoelectron processes of sulfur dioxide, and the required molecular parameters are described in the figure caption. In Fig. 4a, the photoelectron spectroscopy of \(\text{SO}_2 \) is dominated by the \(\omega' \) transitions due to the significant large displacement along the second mode: \(\alpha = (-0.026,1.716) \). The photoelectron spectroscopy of \(\text{SO}_2^- \) in Fig. 4b shows tiny combination bands of the first and second modes regardless of the dominant contribution of the first mode (\(\alpha = (1.360,0.264) \)). We note that the observation of the tiny band combinations indicates reliable performance of the trapped-ion simulation.
4 Conclusions

As the first demonstration of quantum simulation for molecular vibronic spectroscopy, our trapped-ion device shows excellent performance at a small-scale after the error-correction scheme in section E of the ESI.† In the near future, we expect many mode implementation for large-scale molecular simulation, where the multi-modes can be mapped to the local vibrational modes or collective normal modes of many ions in a single trap. The quantum optical operations demonstrated using a single ion will be directly applied for large-scale simulation. This would be useful in concluding the quantum supremacy of boson sampling with the Gaussian states. The molecular simulations in trapped-ion devices and the real molecular spectroscopic signals can be compared as a certification protocol for large-scale Gaussian boson sampling, which cannot be verified classically because of the #P-hardness (cf. Neville et al.28 and Clifford29 for the classical effort to reach the classical limit of the original boson sampling problem).30–33 In closing, we would like to comment on the possible extension of the quantum simulation of molecular vibronic spectra, which is currently in preparation: (i) one could possibly go beyond the Condon approximation, i.e. the coordinate dependence of the transition dipole moment, by introducing an additional phase to the input Gaussian states; (ii) the anharmonic problem, which is more challenging, can be incorporated in the molecular process, for example with Morse-oscillators.30–32 Moreover, we may adapt the quantum simulation of the spin-boson model22 or many-body bosonic-fermionic systems33 for further vibronic simulation beyond the Born–Oppenheimer approximation.
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grants No. 2016YFA0301900 (No. 2016YFA0301901) and the National Natural Science Foundation of China Grants 11374178 and 11574002. JH acknowledges the support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A6A3A04059773 and NRF-2017R1A4A1015770).

References